
AD-A276 908
IEIIEI1uII

* FINAL TECHNICAL REPORT TO

MANPOWER RESEARCH AND DEVELOPMENT PROGRAM

by

Jeffery L. Kennington and Richard V. Helgason
Department of Computer Science and Engineering

Southern Methodist University
Dallas, TX 75275-0122

* (214)-692-3278 and (214)-768-3079

for

High Speed Heuristics For Real-Time
• Personnel Assignment Models

DTIC
ELECTE

*'• MAR 1R 4 1994 26 January 1994

N00014-92-J-1619 94-08210
SMU # 5-25151

Td o
(or p~ubijjz aeezs ld c,1'Y,:'s

itsI -

* 94 311 '156

Unclassified
* SECURITY CLASSIFICATION UP THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION U alIb. RESTRICTIVE MARKINGSUnclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

2t. DECLASSIFICATION I DOWNGRADING SCHEDULE Unrestricted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
((If cable)

SMU CSE

6C. ADDRESS (Ct, State, and ZIP Code) 7b. ADDRESS (City,. State, and ZIP Code)

Dallas, TX 75275-0122

8a. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research ONR

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 North Quincy Street PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Securny Cla&sificataon)

"High Speed Heuristics for Real-Time Personnel Assignment Models"

12. PERSONAL ALITHOR(S) Jeffery L. Kennington and Richard V. Helgason
13b TIM COR GE COUN

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE OUNT
Final FROM 12/1 TO L3/. 94, 1, 26

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesalay and idenitfyf by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

This document presents a new network based model (called the cloning model) for the

problem of on-line personnel assignment. In computer simulation tests, we found that
the specialized software designed to solve the cloning model will obtain optimal solu-
tions in about four seconds on a 486 PC running at 50 Mhz. This demonstrates that
this model can be used for on-line applications of personnel assignment which involve
telephone negotiation. In addition, this document presents new algorithms for a variety
of optimization models including (i) the singly constrained assignment problem, (ii) the
separable convex cost network flow problem, (iii) the minimum cost network flow
problem, and (iv) the problem of identifying the extreme points of the convex hull of a
given set of points.

20. DISTRIBUTIONJAVAJLABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIED)UNLIMITED 0 SAME AS RPT. E OTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Jeffery L. Kennington (214) 768-3278 CSE

DD FORM 1473, s4 MAR 83 APR edmon may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassified

Table of Contents

I. Statement of Work 1

II. Publications 2

Appendix A: On-Line Algorithms for Navy Enlisted Personnel A-1
Assignment

* Appendix B: The Singly Constrained Assignment Problem: B-1
A Lagrangean Relaxation Heuristic Algorithm

Appendix C: Solution of Convex Cost Network Flow Problems C-1
Via Linear Approximation

Appendix D: Computational Study of Implementational Strategies D-1
for the Network Penalty Method

Appendix E: A Nearly Asynchronous Parallel LP-based Algorithm E-1
for the Convex Hull Problem in Multidimensional Space

Appendix F: Distribution List F-1

Accesion ForI

NTIS CNArJ,..

By

Di•t; ibt~o• F

S::c-cial

I. STATEMENT OF WORK

Optimization algorithms and their implementation in software provide the
computational engines needed to develop new and improved computer sys-
tems for enlisted personnel assignment. Specifically, network based optimiza-
tion models are frequently used to model problems in the personnel assign-
ment area. The current trend is to develop on-line (as opposed to batch)
computer systems to assist detailers in making job assignments. This means
that iterative optimization algorithms that could run in batch mode and take
thirty minutes of computer time on an IBM mainframe, are now expected to
obtain an optimal solution in only a few seconds on a personal computer.
This requires new approaches to both the models used and the algorithms im-
plemented. In this report, we present new ideas in both of these arenas.

0

H. PUBLICATIONS

Title

On-Line Algorithms for Navy Enlisted Personnel Assignment

Author

Jeffery L. Kennington

Executive Summary

This manuscript presents a pair of on-line optimization models for use by
assignment detailers during telephone negotiation with enlisted personnel.
The decision problem in the environment in which job assignments are made

on-line without allowing an enlisted man to have any choice may be modeled
as an on-line bipartite matching problem. Using an empirical analysis, the
theoretical best algorithm for this model was shown to also work very well in
practice. The decision problem in the environment in which an enlisted man
is given a choice from among a fixed number of candidate assignments may
be modeled as a minimum cost flow problem. In empirical tests on both a
Dec Alpha workstation and a 486 based PC, it is shown that the specialized
software for this model is sufficiently fast that it can be used in on-line appli-
cations.

Publication Status

This paper has been submitted for publication and is currently under review.

2

S. .. . • • • m • •,..~mi mum mun nnliimn im n unm, m •

Title

The Singly Constrained Assignment Problem: A Lagrangean Relaxation Heu-

ristic Algorithm

Authors

Jeffery L. Kennington and Farin Mohammadi

Executive Summary

Many Navy personnel assignment problems can be modeled as some version

of an assignment problem or an assignment problem with side constraints.
This manuscript presents a heuristic method for finding near optimal integer
assignments for the singly constrained assignment problem. Lagrangean dual-
ity theory is used to develop a robust procedure which can easily obtain inte-
ger solutions guaranteed to be within 1% of an optimum for problems having

up to 50,000 binary variables. In empirical tests with software implementa-
tions of all competing techniques, our software was found to be superior in
terms of both quality of solution and solution time. We believe that this is the
current best algorithm and software implementation for this class of problems.

Publication Status

This paper has been accepted for publication in CompIutational Opimizaion

an pplicatins

Title

Solution of Convex Cost Network Flow Problems Via Linear Approximation

Authors 0

Richard V. Helgason and Rajluxmi V. Murthy

Executive Summary

This paper presents a specialized algorithm for solving the separable convex 0
cost network flow problem. The method involves solving a piece-wise linear
approximation which yields an upper bound for the original problem. A
lower bound is obtained using either the Frank-Wolfe method or a Lag-
rangean method. If the two bounds satisfy a termination criteria, then the
procedure terminates; otherwise, the piece-wise linear approximation is re-
fined near the current solution and the procedure is repeated. In an empirical
evaluation with quadratic problems, a software implementation of the new al-
gorithm was found to be about four times faster than a comparable software
implementation of the Frank-Wolfe method.

Publication Status 0

This paper has been accepted for publication in Oiimizatiia Methods aad
Software,

4

Title

Computational Study of Implementational Strategies of the Network Penalty
Method

Authors

Nandagopal Venugopal and Richard V. Helgason

Executive Summary

This paper presents a pair of algorithms for the minimal cost network flow
problem based on the network penalty method of Conn, Gamble, and Pul-
leyblank. In an empirical analysis, a software implementation of the primal
network simplex method was found to be superior to software implementa-
tions of the network penalty method.

Publication Status

This paper has not been submitted for publication.

5

Title

A Nearly Asynchronous Parallel LP-based Algorithm for the Convex Hull
Problem in Multidimensional Space

Authors

Jose Dula, Richard V. Helgason, and Nandagopal Venugopal

Executive Summary

The frame problem is to find the extreme points of the convex hull of a given
set of points. Alternately, one wishes to classify the points of a given set into
those which are extreme points of the convex hull of the given set and those
which are not. Applications of the frame problem appear in stochastic pro-
gramming, data envelopment analysis, and redundancy determination in linear
programming. This paper presents a new parallel algorithm for this problem
along with an empirical analysis of the algorithm. Speedups of seven were
obtained using fourteen processors on a twenty processor Sequent Symmetry
S81.

Publication Status 0

This paper has been submitted for publication and is currently under review.

6

• • I m I I II l l 1

Technical Report 93-CSE-30

On-Line Algorithms for Navy Enlisted
Personnel Assignment

By

Jeffery L. Kennington

(214) smu-3278
jlk@seas.smu.edu

Department of Computer Science and Engineering
Southern Methodist University

Dallas, TX 75275-0122

July 1993

A-i

Abstract

Each year over 200,000 Navy enlisted personnel are assigned new jobs at a

cost of over 250 million dollars in moving expenses. The personnel involved in

assignment prefer an on-line system which allows for telephone negotiation be-

tween the enlisted person and his detailer who will make the new assignment. This

manuscript presents a pair of mathematical models and algorithms which can be

used for on-line assignment. One model assumes that the assignment decision

rests solely with the detailer who makes decisions which are simply relayed to the

caller. This model is known in the literature as on-line bipartite matching. The

second model assumes that both the enlisted man and the detailer play a role in

selecting the new assignment. The detailer prepares a list of potential jobs from

which the enlisted man may choose. The underlying mathematical model is a

network program. The feasibility of using network optimization for this on-line

system is demonstrated in a simulation study.

Acknowledgment

This research was supported by the Navy Personnel Research and Development

Center and the Office of Naval Research under Contract Number

N00014-91-J-1234.

A-2

I. INTRODUCTION

During the last eight years, analysts at the Navy Personnel Research and

Development Center have developed and installed two completely different person-

nel assignment systems. These systems were designed to assist some three hun-

dred detailers at the Navy Annex in Washington D. C. with the task of assigning

200,000 Navy personnel to new jobs each year. The Enlisted Personnel Allocation

and Nomination System (EPANS) solves an optimization problem off-line in a

batch operation. The Computer Enhanced Detailing and Distribution System

(CEDAD) is an on-line system that produces a list of recommended jobs for a

given person. While EPANS provides near optimal assignments based on the given

eligibility rules, it was not warmly embraced by the detailers for whom it was

designed. The on-line CEDAD system has been a great success and will be the

model for future production systems in the area of personnel assignment.

The CEDAD on-line system is similar to an airline reservation system and is

used to assist a detailer during telephone negotiation with Navy personnel who are

up for reassignment. A man who is a candidate for reassignment calls his detailer

and requests information about open positions. While on the phone, the detailer

uses the CEDAD system to produce a list of potential assignments for this caller.

The list of potential assignments is a function of the skills of the caller, the avail-

ability of a technical school which may be required for a particular assignment,

timing issues regarding when a ship is scheduled to embark, and the technical

requirements of the jobs. Based on the list produced by CEDAD, the detailer

suggests a few possibilities and the caller and the detailer negotiate a new assign-

A-3

ment. Once an assignment has been agreed upon, the detailer initiates the process

to generate orders for this caller and this job is removed from the system. This

entire process is usually handled in a single telephone conversation. At the end of

the month, all men who have not been assigned are matched to jobs by the

detailer. Each month begins a new cycle and a typical problem involves 200 men.

Unassigned jobs are carried forward to the next month and some jobs remain

vacant. Most ships put to sea with less than the full authorized crew.

In this study we present two mathematical models related to Navy personnel

assignment along with simulation results obtained from applying these models. A

binary eligibility matrix B where bij = 1 implies that man i is eligible for job j is

input for both models. The eligibility rules are not documented and are the subject

of much debate within the Navy. Different dispatchers (who are the experts in

Navy personnel assignment) will produce different eligibility matrices for the same

set of men and jobs. For this analysis, it is assumed that a unique eligibility

matrix can be developed.

A-4

II. ON-LINE ASSIGNMENT WITHOUT CHOICE

Traditionally the Navy has attempted to allow its 600,000 people to have

some influence over their assignments. The telephone numbers of the 300 dis-

patchers are published and it is well-known that an individual can talk to his dis-

patcher about their new assignment. The dispatchers are also in the Navy are

given instructions about how assignments should be made. For the case in which

the dispatcher makes the decision and relays the new assignment to the caller,

there exists a mathematical model which has appeared in the literature under the

title on-line bipartite matching.

* The key feature of the on-line bipartite matching model is that the dispatcher

only obtains access to the rows of the eligibility matrix as the men arrive for

service (assignment). This is exactly the information provided to the dispatcher by

the CEDAD system. In the context of the problem of interest, the on-line bipartite

matching problem may be stated as follows:

Given n men and n jobs, suppose the men arrive at random and re-

quest an assignment. Upon the arrival of man i, the ith row of the

eligibility matrix is presented to the dispatcher along with a list of

previously assigned jobs. From the available assignments (if one ex-

ists) the dispatcher selects a job and the assignment for man i is

made. The objective of the dispatcher is to maximize the total num-

ber of assignments.

The input for this problem is the eligibility matrix which is revealed to the dis-

patcher one row at a time.

• If a particular man is only eligible for a few jobs, this would not be known to

the dispatcher until man i arrived for service. Suppose the current eligibility ma-

trix is given by

A-5

F 1111]
1111
1100

and the men arrive in the order 1, 2, 3, 4. If the dispatcher assigned man 1 to job

1 and man 2 to job 2, then neither of the remaining men could be assigned.

Hence, only 2 assignments would be made when 4 are possible. If the dispatcher 0

was presented B prior to the first arrival, then he could solve the bipartite matching

problem off-line and simply reveal the optimal assignments as the requests are

made. 0

Theoretical results and an optimal algorithm for the on-line bipartite match-

ing problem have been presented by Karp, Vazirani, and Vazirani [19901. For this

type of model, a worst-case analysis compares the performance of a given algo-

rithm against an adaptive on-line adversary. For the bipartite matching problem,

this means that the adversary gets to specify row i+1 of the eligibility matrix, B,

after assignments have been made for the first i men. The adversary must also

construct his own perfect matching using the same eligibility matrix presented to

the algorithm. This can be viewed as a zero-sum two person game in which one of

the players is selecting the algorithm to be applied and the other player, called the

adversary, selects the input data (the eligibility matrix) in an attempt to foil the

first players algorithm. In this way a worst-case analysis can be developed.

The simplest algorithm for this problem is known as a greedy algorithm. As

each man is presented, the corresponding row of the eligibility matrix is scanned

and the first unassigned job is selected. This may be described as follows:

A-6

Greedy On-Line Algorithm

Inputs: n - denotes the number of men and jobs

b[i,j] - equals 1 if man i is eligible for job j, and 0; otherwise

Output: man[i] - equals j if job j is assigned to man i, and 0; otherwise

begin

for i=l,...,n do

man[i] +- 0, E +- {j:b[i,j]=1)\J,

if E 9 (D, then j +- min(k:k e E), man[i] 4- j, J +- J u j};

end for

end

An adversary can produce an eligibility matrix for which there is a perfect

matching (every man is assigned to a job) in which the greedy algorithm will only

achieve n/2 assignments. Consider the following algorithm:

Worst Adversary for the Greedy Algorithm

Input: n - denotes the number of men and jobs

Outputs: greedyman[i] - equals j if man i is assigned to job j by the

greedy algorithm, and 0; otherwise

advman[i] - equals the job assigned to man i by the

adversary

Assumption: n is even

begin

A-7

p ~-n/2;

for i=l,...,p do

for j-1,...,n do b[i,j] +- 1, greedyman[i] •- i, advman[i] n+l-i;

end for

for i-p+l,...,n do

greedyman[i] 0;- 0;

for j=l,...n do b[i,i-p] +.- 1, advman[i] +- i-p;

end for

end

One approach which has been used to foil an adversary is to introduce ram-

domization into the algorithm. Since the adversary can not forecast the precise

assignments made by the algorithm, a randomized algorithm is superior to a

greedy algorithm. This method may be stated as follows:

Randomized On-Line Algorithm

Inputs: n - denotes the number of men and jobs •

b[i,j] - equals 1 if man i is eligible for job j, and 0; otherwise

Output: man[i] - equals j if job j is assigned to man i, and 0; otherwise

begin

for i-.,...,n do

manji] +- 0, E +-- (j:bti~J]=1)\J;

A-8

if E 1 0, then select j randomly from E, man[i] +- j, J +- J u {j);

end for

end

The following is an adversary for the randomized algorithm:

Adversary for the Randomized On-Line Algorithm

Input: n - denotes the number of men and jobs

Outputs: randomman[i] - equals j if man i is assigned to job j by the

randomized algorithm, and 0; otherwise

advman[i] - equals the job assigned to man i by the

adversary

Assumption: n is even

begin

p +- n/2, R4-4, A+ 4;

for i=l,...,p do

for j=l,...,n do b[i,j] +- 1;

for all j e R u A do b[i,j] +- 0;

E +- (j:b[i,j]=1};

select r at random from E\R, randomman[i] • r, R -- R u {r);

select a at random from E\A, advman[i] - a, A - A u {a);

end for

for i=p+l,...,n do

randomman[i] --0;

for j=l,...,n do b[i,j] 1;

for all j e A do b[i,j] - 0;

A-9

E (jb,- J-)

select a at random from E, advman[i] ,- a, A -- A u (a);

if E\R, 0, select r at random from E\R, randomman[i] 4- r, R ,- R u (r);

end for

end

Karp, Vazirani, and Vazirani [1990] indicate that the randomized algorithm

performs poorly on the following matrix:

S1, if i = j or 1 :5 1 :5m/2 and n/2 :5 j :5 n
by 0 , otherwise

where n is even. They claim that the randomized algorithm gives too high a prior-

ity to the jobs (n/2,...,n) during the first n/2 assignments. An algorithm known as

the ranking method, given below, corrects this fallacy.

The Ranking Algorithm

Inputs: n - denotes the number of men and jobs

b[i,j] - equals 1 if man i is eligible for job j, and 0; otherwise

Output: man[i] - equals j if job j is assigned to ma- i, and 0; otherwise

Other: index[p] - denotes the job with the pth priority

begin

E .-

for p=1,...,n do select j at random from E, index[p] + j, E +- E\(j};

A-1O 0

for iul,...,n do

stop +- 'no, p 1;

while stop = 'no' and p S n do

j -- index[p];

if j i J and b[i,j]=l then

man[i] j, J 4-- J u 0), stop .- 'yes';
else

p 4-p + 1;

end if

end while

end for

end

Karp, Vazirani, and Vazirani prove that the on-line ranking algorithm achieves the

best possible performance for this problem.

It is well-known that the theoretically best algorithm may not be the best

practical procedure. The inadequacy of the worst-case criterion for judging algo-

rithms is clearly demonstrated in the comparison of the simplex method with the

ellipsoid method for solving linear programs. In a worst-case analysis, the ellip-

soid method is superior to the simplex method, but to my knowledge all empirical

analyses have shown that the simplex method is far superior to the ellipsoid

method for practical application. The folklore about the ellipsoid method is that

the observed behavior is similar to the worst-case bound whereas the observed

behavior of the simplex method is much better than the worst-case bound. An

excellent discussion of both algorithms may be found in Chvatal [1983].

A1

The three algorithms have been implemented in software and tested on 150

randomly generated test problems. For each problem density, fifteen problems

were solved using each of the three algorithms. The number of assignments

achieved by each algorithm was recorded in three vectors of length fifteen. These

vectors were sorted and the minimum, median, and maximum values achieved are

presented in Table 1. The test problems were generated so that a perfect matching

exists. For the 5% dense problems, the best matching obtained by the greedy

algorithm was 391 men whereas both randomized and ranking achieved a best

matching of 392 men.

Table 1 About Here

The important results are illustrated graphically in Figures 1 and 2. The

upper end of each bar represents the best matching achieved, the lower end repre-

sents the worst achieved, and the rectangle indicates the median for the fifteen

problems. For the low density problems illustrated in Figure 1, the ranking algo-

rithm is superior. As the density increased (see Figure 2), there was essentially no

difference among the three algorithms.

Figures 1 and 2 About Here

The best possible outcome in the analysis of an algorithm is for it to have the

best theoretical bound and be the best performer in an empirical analysis. Our

A-12

simulation -!suits show that the ranking algorithm for on-line bipartite matching is

not only best using the worst-case criteria, but is also best in an empirical analysis.

A weaknesses of this empirical analysis is that it involved random problems.

Hence, applying a greedy algorithm to a random problem may be viewed as the

same as the ranking algorithm. This helps explain why the greedy algorithm works

so well in the empirical analysis. For Navy enlisted personnel assignment in which

choice is not allowed, this study clearly indicates that the ranking algorithm is the

preferred method.

A-13

I1. ON-LINE ASSIGNMENT WITH CHOICE

In the Navy it is generally believed that allowing personnel to influence their

assignments has a positive effect on morale. However, everyone can not be as-

signed to their first choice and some individuals must rotate through the less desir-

able assignments. For the model presented in this section, individuals will be

given a list of potential assignments from which they can choose. The size of the

list will be controlled and the jobs placed on the list will be carefully selected by an

optimization model.

For this model we assume that the entire eligibility matrix is available to the

dispatcher prior to the first arrival. We also assume that a cost, c4 is incurred

when man i is assigned to job j. These costs are related to Navy policies which are

used to guide dispatchers in making assignments. Under these assumptions, the

problem of on-line assignment vith choice from a list of size k can be defined as

follows:

Given n men and m>n jobs, suppose the men arrive at random and

request an assignment. Upon the arrival of man i, the dispatcher 0

generates a list of potential assignments. The list must have k jobs
unless man I is eligible for fewer than k unassigned jobs in which case

all possible assignments are presented. Man i chooses his next as-

signment from this list. Assuming that an unassigned man must pay a
high cost, the objective of the dispatcher is to achieve a small total

cost for all assignments.

The inputs for this problem are the eligibility matrix, B, the cost matrix, C, and the

list size, k.

For the special case in which k=1, the problem could be solved off-line as a

network model and the assignments could be revealed as the men arrive. The

A-14

network structure for this model is illustrated in Figure 3. The nodes ml, ... , m4

represent the four men each with a supply of 1, and the nodes j1, ... , j6 represent

the six jobs. The sink has a demand of 4 which will absorb all of the supply. All

arcs from man i to job j have a unit cost of cm , a lower bound of 0, and an upper

bound of 1. All arcs from man i to the dummy job have a unit cost of 0, a lower

bound of 0, and no upper bound. The arcs from job j to the sink have unit cost

and lower bound of 0 and upper bound of 1. The arc from the dummy job to the

sink has infinite unit cost, infinite upper bound, and 0 lower bound. Solving this

model will produce an optimal assignment for the special case in which k=i.

For the case in which k>l, we propose a similar network model in which a

given man is cloned k times. For the model illustrated in Figure 3, suppose man 3

arrives for service and kW3. The corresponding network model is illustrated in

Figure 4. Note that only two requirements were modified to obtain the Figure 4

model from the Figure 3 model. The supply for man 3 is 3 and the demand at the

sink is 6. Suppose the flows given in (.) are optimal for the Figure 4 model. Then

man 3 would be allowed to choose his assignment from the list consisting of jobs 3

and 4. Suppose man 3 chooses job 4 and man 1 arrives next. The new model is

illustrated in Figure 5. Note that only three changes were made to the model in

Figure 4 to obtain the model in Figure 5. The supply of man 1 was changed from

1 to k=3, the supply of man 3 (previous arrival) was changed from 3 to 1, and the

lower bound on the arc from man 3 to job 4 was set to 1 (i. e. man 3 is assigned to

job 4).

The reason we show the modifications required to change the model in Fig-

ure 3 to the model in Figure 4 and the model in Figure 4 to the model in Figure 5

A-15

|S

is because we envision a system that uses the optimal solution to one model as an

advanced starting solution to obtain the optimal solution to the next model. For a

200 man problem, we would solve the model in Figure 3 off-line before the first

man arrived. When the first man arrived, we would clone that man and solve the

corresponding network problem. The solution would be presented and the man

would choose his new assignment. When the next man arrives, the process would

be repeated.

A simulation system has been developed to obtain information on both the

quality of the solutions which could be expected and the computer time required to

solve the network models. The network models were solved with a special version

of the network solver MODFLO (see Ali and Kennington [1989]). A summary of

the results are given in Table 2. All the models had 602 nodes and from 10,000 to

20,000 arcs. The time to solve the base model illustrated in Figure 4 appears

under the column entitled Optimum Using MODFLO. These times varied from a

low of 2 seconds to a high of 7 seconds. All times are wall clock times on a Dec

Alpha machine which has a retail price of approximately $100,000. For each of

the fifteen problems, a simulation was run in which the men arrive randomly.

Hence, to simulate one month with a 200 man problem requires solving 201 net-

work problems. Each of these runs was replicated 5 times to give a grand total of •

15,015 solved problems to accumulate the data in Table 2.

Table 2 About Here

A-16

• . m WW lW ~mll • [I nn ll~ ll0

For the k-4 problems having 100 jobs/man or 20,000 arcs, the first problem

was solved in 3.8 seconds, and the 1000 other problems were solved in less than

0.3 seconds each. That is, the reoptimization never took more than 10% of the

time required to obtain the first solution. The median times for all cases was

much less than 1 second.

The Navy has expressed an interest in developing a distributed system in

which a dispatcher makes his calculations on a PC after downloading the data from

the mainframe. Table 3 gives a summary of the same information run on a 486

based PC running at 50 Mhz. The median times for reoptimization are acceptable

for a PC based system.

Table 3 About Here

The data in Tables 2 and 3 also present the trade-off between increased

values of k (the number of jobs presented to a caller) and the resulting objective

value. The median values are displayed in Figure 6. If four jobs are offered to

each caller, one can expect an overall assignment to be about 2.7 times worse than

the best possible. When ten jobs are offered, the objective value is about 6 times

worse.

Figure 6 About Here

A-17

IV. SUMMARY AND CONCLUSIONS

This manuscript presents two on-line models and corresponding algorithms

for the assignment of Navy enlisted personnel. The case in which reassignment is

made without allowing an enlisted man to have any choice can be modeled as an

on-line bipartite matching problem. The theoretical best on-line bipartite match-

ing algorithm was also shown to be best in an empirical study. The case in which

reassignment is made with an enlisted man having a choice from among k poten-

tial assignments has been modeled as a pure network problem. The feasibility of

this approach was demonstrated in a simulation model. By using specialized soft-

ware designed to solve network problems and using the previous solution as an

advanced start for the new optimization problem, the solution times on a 486

based PC were only a few seconds. We also observed that a large list size results

in solutions which have a large deviation from an optimal solution produced using

a list size of 1.

A-18

REFERENCES

Ali, A., and J. Kennington, [1989], "MODFLO User's Guide," Technical Report
89-OR-03, Southern Methodist University, Dallas, TX 75275.

Chvatal, V., [1983], Linear Programming. W. H. Freeman and Company, NY,
NY.

Karp, R., U. Vazirani, and V. Vazirani, [1990], "An Optimal Algorithm for On-
Line Bipartite Matching," STOC: Proceedings of the 22nd ACM
Smpoosium on Theory of Computing. 352-358.

A-19

olnig

g •gggg$
g

•1:• <• •• "• "•• •

__• •• •.•. •

I
•• •

A-20

@

' | I I I I

OD g 0 000 No-. 00- %n e - 04n - %

0 oa0 a4vC0 a ~ a. 0 CIO - 40 a4cQ40 h40a

M IV0 W0 000 000D 000%

rm ~i 00%0 000M 000 No 00 t 000

C4 0w v wb"w -- 0% %t

W f E1VZ 0 '~ .0%0- O A bA ; P

310 WI& 0%n0 %*%D 0 t0%

0OIý 40 w Q - 0% Q W 0 0% t- VV

I * 0 22 w4 "O -E 4 '- WV -4.4-

_" OObD Q00 Q0 000 00 000

Q g . SQB CD C. -0 CD-. -0 0 g

CO 40 n Q O 4CO o 0 40 Q40op q -W -W wr w -r v

000 0%0%0 00 0 0 0

W' .c 3rMM N 3X

- -K 00f% e ,!e

-4

a -4-r v(4 0. C4 2 " ý

V,0% t- A v'0 t- "0*e

0 C~4(E m tl ,0%Me

eq QO 0 (4N -4 m-4 t -42- -- 4-0

C 000 Q0 00 00 Q 000

Ob6 F'o 6.oD Q~a ~ w

0 -4D* -%DO -NG -W NO a* v-4-0

c ,0C ,gaggc

a_ _ QCO_____________ 0 C

v-2

x x x xx x x wbg N x x

Number Matched

400-

G Rd Rk

398- Rk - --
3•sms~ ~G Rd ka-

C3

394 3

Rd Rk
392 G

390

388- C G = Greedy Algorithm

C Rd = Randomized Algorithm
386-

Rk = Ranking Algorithm

384

382

380

5% Dense 10% Dense 15% Dense

Figure 1. Performance of On-iUne Matching Algorithms for 400x400
Bipartite Matching Problems Having an Arc Density of
at Most 15%

A-23

Number Matched

G
398 3-3

G Rk Rk

396 - -

G Rd Rd Rd

Rk

394

G = Greedy Deterministic Algorithm

Rd = Randomized Algorithm

392 Rk = Ranking Algorithm

390-

25% Dense 35% Dense 45% Dense

Figure 2. Performance of On-Line Matching Algorithms for 400x400
Bipartite Matching Problems Having an Arc Density of at
Least 25%

A-24

I

Men Jobs

II
[0,0,big]

ml} {0) 001

[big,O,big]

(requirement)

[unit cost, lower bound, upper bound]

Figure 3. Network Model for Off-Line Assignment (4 men and 6 jobs)

A-25

Men Jobs0

ji (0)

ml (00

j20

Fre gurem4eewrnMdlfrt)Ln sinmn ihThe hie

A-26

Men Jobs

(3))

ml} {0}

A-27

ml j4• (0)

(requirement)

[unit cost, lower bound, upper bound] j6 {0)

Figure 5. Network Model when Man 1 Arrives (Man 3 is Assigned to Job 4)

A-27

Scaled Objective Value

900

800,

6000

5 00

400-

300

0l a
Ime

jobs offered

Figure 6. The Scaled Objective Value As a Function of the Number
of Jobs Offered to a Caller 0

A-28

-- m msmamam m• m u mimi0

Technical Report 91-CSE-I

THE SINGLY CONSTRAINED ASSIGNMENT PROBLEM:
A LAGRANGEAN RELAXATION HEURISTIC ALGORITHM

Jeffery L. Kennington
(214)-768-3278

jlk@seas.smu.edu
&

Farin Mohammadi
(214)-768-1476

fam@ seas.smu.edu

Department of Computer Science and En-gineering
School of Engineering and Applied Science

Southern Methodist University
Dallas, Texas 75275-0122

revised June 1993

Comments and criticisms from interested readers are cordially invited.

B-i

ABSTRACT

This manuscript presents a new heuristic algorithm to find near optimal integer

solutions for the singly constrained assignment problem. The method is based on

Lagrangean duality theory and involves solving a series of pure assignment problems.

The software implementation of this heuristic, ASSIGN+I, successfully solved problems

having one-half million binary variables (assignment arcs) in less than seventeen min-

utes of wall clock time on a Sequent Symmetry S81 using a single processor. In com-

putational comparisons with MPSX and OSL on an IBM 3081D, the specialized soft-

ware was from one hundred to one thousand times faster. In computational compari- 0

sons with the specialized code of Mazzola and Neebe, we found that ASSIGN+l was

forty times faster. In computational comparisons with our best alternating path special-

ized code, we found that ASSIGN+I was more than three times faster than that code.

This new software proved to be very robust as well as fast. The robustness is due to

an elaborate scheme used to update the Lagrangean multipliers and the speed is due to

the fine code used to solve the pure assignment problems. We also present a modifica-

tion of the algorithm for the case in which the number of jobs exceeds the number of

men along with an empirical analysis of the modified software.

ACKNO.WLEDGMENT

This research was supported in part by the Air Force Office of Scientific Research un-

der Contract Number AFSOR 91-0028, and the Office of Naval Research under Con-

tract Number N00014-87-K-0223.

B-2

I. INTRODUCTION

The singlly constrained assignment problem is to determine a least cost as-

signment of n men to n jobs such that a single additional constraint is satisfied.

This model is a special case of a binary linear program and may be stated mathe-

matically as follows:

minimize cij x0 (1)
(i.j E E

subject to xij = I , i=l.....n (2)
j: (i. j) S E

I 1, j-1,...,n (3)
i: (i.j) S E

xj E (0, 1} , all (i.j) e E (4)

Z i a11x !s b (5)
(i.j: S E

where cij denotes the cost for assigning man i to job j. aij denotes the coefficient of

xq in the side constraint, b denotes the right-hand-side of the side constraint. E is

the set of (man, job) pairs corresponding to eligible assignments, and x,, = I im-

plies that man i is assigned to job j. In order to simplify the notation we let a

denote the vector corresponding to the coefficients in (5), x denote the vector cor-

responding to the binary decision variables, c denote the vector of costs. and

T= { x : (2). (3), and (4)). Then the singly constrained assignment problem can be

B-3

0

stated as P, = min (cx x E T and ax :S b}, and it is well-known that P, is

NF -complete.

The singly constrained assignment model was first used by Brans, Leclercq,

and Hansen 161 to model the core management of a pressurized water reactor. The

problem is: given two sets of fresh and exposed assemblies determine the location

pattern of these assemblies which maximizes the reactivity of the core under a

constraint on power-distribution form factor. After linearization, Brans, Leclercq,

and Hansen reduce the problem to a sequence of singly constrained assignment

problems and propose an implicit enumeration routine to solve these problems.

Our work on P, was motivated by models which had been developed by analysts at

the Navy Personnel Research and Development Center in San Diego. These models

involve the optimal assignment of men to jobs under a budget constraint related to

relocation cost.

The first specialized algorithm for P, was presented by Gupta and Sharma

1141. Their method was a straight forward enumeration scheme and they present

no computational results. Aggarwal [11 presents an improved algorithm for P,

which combines Lagrangean-relaxation with the enumeration algorithm of Gupta

and Sharma 1141 to obtain an optimal solution. No computational results for this

method is presented. Mazzola and Neebe [231 developed a two phase algorithm for

the constrained assignment problem. Phase I is a subgradient optimization based

heuristic procedure that obtains near optimal integer solutions and phase 0 is a

branch-and-bound procedure which obtains the optimal solution. To generate so- 0

lutions at each node of the branch-and-bound tree they developed a method that

combines a restricted basis pivoting rule followed by a subgradient routine. Their

empirical evaluation of the heuristic and the branch-and-bound algorithm ndi- 0

cates that both procedures are satisfactory for dense assignment problems of size

B-4

== • S

up to 1OOxOO and the phase I procedure obtains near optimal integer solutions for

most problems tested. Bryson 171 presents an algorithm based on the parametric

programming procedure of Gass and Saaty 191. The largest problem they solved

had fewer than 2000 edges and did not exploit the network structure of this model.

This is in contrast to our empirical investigation in which the small problems have

over a quarter of a million edges. Ball, Derigs, H-ilbrand, and Metz 13] present an

algorithm which will solve the special case of P1 in which aij c (0,1) for all (i~j).

The work by Klingman and Russell 120] and Barr, Farhangian. and Ken-

nington 151 is for the continuous version of P1 rather than the binary version. That

is, the above work would be applicable for the model in which (4) is replaced with

the nonneeativity constraint xj 0, all (ij) e E.

Klingman and Russell 1211 developed a simplex based method for the trans-

portation problem with a single side constraint and Glover, Karney, Klingman, and

Russell 113) developed a simplex based method for the transshipment problem

with a single side constraint. Authors of both papers state that codes based on their

procedures are significantly faster than the LP code APEX-rn and they both obtain

an integer solution for the problem with an inequality side constraint by pivoting

into the basis the slack variable associated with the side constraint. This yields a

triangular basis which automatically produces an integer solution. Empiricall.

these integer solutions were found to be within l% of optimality.

An extension of the alternating path basis algorithm of Barr, Glover, and

Klingman 141 for the singly constrained assignment problem may be found in Ken-

nington and Mohammadi 1191. Integer feasible solutions are then obtained by a

forced pivot with the slack variable associated with the side constraint. This results

in a lower triangular basis and a corresponding integer feasible solution. This solu-

B-5

0I

tion is not guaranteed to be optimal, but empirical analysis has shown that solu-

tions obtained this way are quite good.

Since (1)-(5) is a binary linear program, all the literature on integer pro-

gramming applies (see Everett (81, Geoffrion [10, 11), Glover 1121, Salkin 128].

Shapiro 129, 301, Parker and Rardin 1271, Nemhauser and Wolsey 1241). In prac-

tice most integer programming models are either solved as a linear program and

the solutions are rounded using some heuristic or branch-and-bound is used in an

attempt to obtain a solution within a prespecified tolerance.

The objective of this study is to present a new algorithm for the singly con-

strained assignment problem. The algorithm is for the problem having an inequal- 0

ity side constraint. We also show how this algorithm can be used to solve problems

in which (5) is an equality and problems in which (3) is replaced with

SXij S- i , j = 1, ... , M. (6) I

i: (i. j) E E

The algorithm uses a Lagrangean relaxation and solves a series of assignment

problems. Empirical results demonstrate the superiority of this approach over com-

peting software. Problems having one-half million arcs were solved in less than

fifteen minutes on a Sequent Symmetry S81 using a single processor.

B-6

- • • , iiiN a " ! | I I I | I i I i

0

11. THE ALGORITHM

In this section we present a heuristic algorithm for the singly constrained

assignment problem, P, rmin (cx : x c T, ax < b). Let P2 = rmin (cx : x c T) be a

feasible region relaxation of P,, and let P3 - min (ax-b : x E T). By dualizing the

side constraint one obtains a Lagrangean relaxation of P, given by P(.l) - min (cx

*+ # (ax-b) : x e T) where f# is the Lagrangean multiplier. Let vJPJ denote the

optimal objective function value for any problem P, then a Lagrangean dual for P,

is LD,=max { vlP(.f)] :f > 0).

We attempt to solve the Lagrangean dual, LD,, by solving the problems P'2, P3

and a series of P(#) for different values of P. P2 is solved to obtain the initial

lower bound, lb, and to determine if the side constraint is redundant. The solution

to P. either establishes that P, has no feasible solution or provides an initial upper

bound, ub. Solving the Lagrangean relaxation, P(fl), always provides a lower

bound and if the optimal solution, x#, is feasible for P,, then cxf is an upper

bound.

It is well known that v[P(8)1 is a piece-wise linear concave function over R'.

Let x# denote an optimum for P(8) at any point #8. Let ý* denote an optimum for

LD,. LD, may have a unique optimum as illustrated in Figure 1 or may have an

infinite number of solutions as illustrated in Figure 2. For the case illustrated in

Figure 1, for all P>P', axp<b and xp is feasible for P,, and for all P <P', ax#>b and

xf is not feasible for P,. For the case illustrated in Figure 2, for all P >P either

axfl<b and xý is feasible for P, or axp=b and xp is an optimum for P,. Similarly for

all •<#*, either ax,>b and x# is not feasible for P, or axp=b and xA is an optimum

for P,.

B-7

ý7ý77- 7 -5ý- •T" m _ _

Figures 1 and 2 here

Let u and v denote upper and lower bounds, respectively on 48 Then a bisec-

tion search can be used to obtain f48. Since obtaining each value of vjP(lj) for a

givenp requires solving an assignment problem, we attempt to obtain a small in-

terval ofuncertainty ju,v) prior to initiating the bisection search. It is well-known

that if theduality gap is zero, then v[LDt=v[P,]. That is, 0

cxp. + #'(axp. - b) = viPI I, or (7)

#" = (vIPI - cx#-)/(ax#. - b). (8)

Prior to using the bisection search, we obtain estimates for #6' using (8) with vIP,!

replaced by (lb+ub)/2, cx#- replaced by ub, and axp. replaced by ax3. That is, the

initial value of P is given by:

= (ub - Ib)/(2(ax3 - b)). (9)

In the bisection search we may apply the normal bisection (4=(u+v)/2) or the

slope bisection as described by Ryu and Guignard 126). The bisection technique S

using the the slopes is a special case of the intersection algorithm of Yu 1311. The

new 48 is selected such that cx. +#(ax,-b)=cx,+#4(ax,-b). That is,

P=(cx, -cx,)/(ax.,-ax,). This selection is illustrated in Figure 3. Note that if

ax, - bf-s3 and ax, - b-s., then the new P will be #'. Ryu and Guignard 1261 prove

that this technique produces an optimal P8 in a finite number of iterations.

Figure 3 here

Using these ideas, the basic strategy for the new heuristic algorithm for P,

may be described as follows: "

B-8

0*step I. find an initial lower bound,

step 2. find an initial upper bound,

while axp < b and stopping criteria not satisfied repeat steps 3 and 4,

step 3. use (9) to estimate # then solve P(K),

step 4. update u, v, ub, and lb if possible,

while stopping criteria is not satisfied repeat steps 5-7,

step 5. update P using normal or slope bisection and solve P(,i),

step 6. if axp < b update u, ub, and if possible lb.

* step 7. if axs > b update v and if possible ub and lb.

When the slope bisection search is used, the algorithm is terminated when either

lP B)l = cx= +P(axM - b) or vIP(B)] = cx, +,/(ax, - b). For the normal bisection

- search, termination occurs when either lu-vl<tol or ub-lb<_.O1lb.

The ASSIGN+1 algorithm for P, is described below:

Input:

* 1. The cost vector, c.

2. The side constraint, vector a and constant b.

3. The set of (man, job) pairs corresponding to eligible assignments. E.

4. For a slope bisection line search, initialize search to slope bisection:

otherwise, initialize search to normal bisection.

5. Termination tolerance, tol.

Output:

1. The solution vector, y.

2. A lower bound for P1, lb.

3. The objective value corresponding to y, ub.

4. The termination status. If P, has no feasible solution. then

B-9

status - infeasible; if an optimal solution was obtained then

status-optimal; otherwise, status - feasible.

algorithm ASSIGN+1:

begin

FIND INITLAL LOWER BOUND;

FIND INITIAL UPPER BOUND;

FIND INITIAL U;

Run:- go;

while "y<O do REDUCE U;

while Run-go do BISECTION;

If u>.l, then fi:= u and let xp be an optimum for P(B);

':= x# -

end

procedure FIND INITiAL LOWER BOUND

begin

let x2 be an optimum for P2. v:= 0. lb:= cx2 :

if axz<b. then status:= optimal, y:= x2. ub:= cy, stop:

end

procedure FIND IN]TIAL UPPER BOUND

begin

let x3 be an optimum for P3, "= ax3-b:

if 6>0, then status:. infeasible, stop:

else status:- feasible, ub:= cx3 , -Y:= I, i:-- (Ib-ub)/(26):

end

B-1O

S• . i i l l i I ii II e

0*

0 Procedure FIND INITIAL U

begin

let xp be an optimum for P(8);

y. ax0-b, W. max(1b~v[P(8)]

if y•0=, then status:- optimal, y:= xp, ub:- cy, stop;

if t•<O, then ub:= min(ub, cxp). u:- P;

else v:- max(v,4) , fl := 2P6, FIND DIAL U;

end

* procedure REDUCE U

begin

if 46m(jb-ub)/(28). then #6:- #/2;

* else # := (1b-ub)!(2b);

let x# be an optimum for P(.8):

y-:= axp-b. lb:= max{ lbvP()j) ;

if -y=O, then status:= optimal, y:= xp, ub:= cy, Ftop;

if /y<O. then ub:= min { ubcxA). u: mrin { u.#):

else v:= 4.

end

procedure BISECTION

begin

if search=slope bisection, then #6:= (cx, - cx,) /(ax, - ax.);

else •: = (u+v) '2:

let xý be an optimum for P(p);

B-il

0nhm u a m a mn u

I:- axp -b, Ib:- max(ib,v(P(8)])

if -Y-0, then status:. optimal, y:= xp, ub:- cy, and stop;

if -V<O, then ub:- min{ ub, cxp), and u:a min{ u,# ; 0

else v:m max(v,.8);

If search-normal bisection, then if Iu-vk<tol or jub-lbk<.Ollb, then

Run:- stop; 0

else

if v'P(fl)J=cx, ,+(ax.- b) or vjP(8)]=cx, +#(ax, - b), then Run:= stop;

end

It is well-known that the main difficulty with the Lagrangean approach is the

selection of the sequence of multipliers, ,, so that software implementations using

these rules are robust. Convergence results can be found in Allen, Helgason, Ken-

nington, and Shetty 12). Most of the steps in the above algorithm are related to the

elaborate scheme for updating P which was developed through empirical analysis.

Minor modifications can be made to the ASSIGN+I algorithm to solve P'3 = {

min cx : x e T, ax-b). Since finding a set of assignments for which ax = b may not

always be possible and since from our work with the Navy Personnel Research and

Development Center we have found that most constraints can be slightly violated 0

and acceptable solutions can still be obtained, we replace ax-b = 0 with lax-bi < F.

That is, instead of P', we attempt to solve min { cx : x E T and lax-bi < Ec . For all

our work we set e to .01b.

B-12 0

TV. EMPIRICAL ANALYSIS

The algorithm ASSIGN÷1 has been implemented in software and empirically

analyzed on both a Sequent Symmetry S81 and an IBM 3081D for both inequality

and equality side constraints. Both codes are written in Fortran and use SEMI (see

Kennington and Wang 116, 171) to solve the assignment problems. SEMI is an

implementation of the shortest augmenting path algorithm for sparse semi-assign-

ment problems and is claimed to be one of the fastest codes available for both

assignment and semi-assignment problems.

We developed a test problem generator with the following inputs: (i) the

number of men, (ii) the arc density, (iii) the maximum cost, C, and (iv) the side

constraint multiplier, k. Both the costs and the side constraint coefficients are uni-

formly distributed over the range 10, El. We randomly generate a feasible assign.

ment. X and determine F for this assignment so that ag = b. The right-hand-side.

b.-for the side constraint is set to kb. For the inequality problems and k = 1. we

observed that for most problems, the side constraint was redundant and therefore a

very easy problem. As k becomes smaller, the feasible region becomes smaller and

for sufficiently small k the problem may become infeasible.

The generator was used to generate the eighty-one inequality problems de-

scribed in Table 1. Under the column entitled "SC RI-S", k was set to .2. .5. and

.9 for the rows entitled "small", "med.", and "large", respectively. It should be

noted that the software is very robust as a function of the magnitude of b and it

requires very few iterations to satisfy the optimality criteria. Results for both nor-

mal and slope bisection are presented. Near optimal solutions to integer programs

with over one-half million binary variables were routinely obtained in less than

seventeen minutes.

B-13

0

Table I here 0

Table 2 gives our empirical results with 135 equality problems. Under the

column entitled "SC RHS", k was set to .2, .5, .9, 1.2, and 1.5 for the rows entitled
"v. small", "small", "med.", "large", and "v. large", respectively. The software is

very robust over a wide range of input parameters and performed very well on all

these problems. Though Tables 1 and 2 indicate that the quality of the solutions

and the amount of time spent to obtain these solutions using normal and slope

bisection are comparable we adopt the slope bisection due to the stability of the

technique.

Table 2 here

In contrast with some of our previous experience using subgradient optimiza-

tion, we never found a problem that caused this software any major difficulty. We

attribute the robustness of this software to the elaborate scheme for updating the

Lagrangean multiplier which works well for this class of problems. WN" attribute

the speed of this software to the semi-assignment software, SEMI. Of course, the

version of SEMI that we used was modified to handle single precision real cost as

opposed to integer data required by the version described in Kennington and Wang

1171.

Tables 3 through 6 present our empirical results comparing the specialized

software for the singly constrained assignment problem with both MPSX (see

Mathematical Programming System Extended 1221) and OSL (see Optimization

Subroutine Library 1251). If the ASSIGN+1 software for the equality side constraint

terminates due to u-vy<tol and no feasible solution has been found. then the current

B-14

S- • • m m i iai | F I

best known Lagrangean multiplier is used to find a solution. In this case the side

constraint violation will exceed 1%. This occurred for three of sixteen problems

presented in Tables 3-6. In the worst case, the maximum deviation from feasibility

was 1.57%. That is, all solutions satisfied the constraint lax-bi<O.0157b.

Tables 3, 4, 5, and 6 here

All the MPSX and OSL runs were made with default parameter settings. A

few of the smaller problems were successfully solved, but the times were from two

to three orders of magnitude slower than those for the specialized software. Since

MPSX and OSL are general purpose integer programming systems which do not

exploit the special structure of this problem we ran a specialized network with side

constraint code, NETSIDE (see Kennington and Whisman 1181) on an 800x800 test

problem in an attempt to solve the linear programming relaxation of this model.

Convergence was not achieved after two hours of CPU time on the Sequent Sym-

metry S81.

We also compared the phase I specialized code of Mazzola and Neebe 1231

with ASSIGN+1. These results may be found in Table 7. Under the column entitled

"Side Const RHS", k was set to .2, .4, and .6 for the rows entitled "small-. "me-

dium", and "large", respectively. ASSIGN+1 was faster and produced better inte-

ger solutions on every problem attempted. Our study was restricted to dense prob-

lems because their code was designed for dense problems.

Table 7 here

B-15

0

We also compared ASSIGN+I with our best alternating path code ABI (see

Kennington and Mohammadi 119)). These results can be found in Table 8. Re-

markably, both codes obtained integer solutions having identical objective values

for all problems attempted. ASSIGN+i was approximately three times faster than

ABI on these test problems.

Table 8 here •

As stated we have modified SEMI to handle single precision real cost coeffi-

cients as opposed to the integer cost coefficients. Generally this modification is

expected to increase the execution time drastically, but in this case, as Table 9

indicates this increase was less than ten percent. Results presented in Table 9 are

the average wall clock times for three pure assignment problems, running on a

Sequent Symmetry S81 using the floating point accelerator.

Table 9 here

B-16

V. THE SINGLY CONSTRAINED UNBALANCED ASSIGNMENT PROBLEM

Navy personnel assignment problems are unbalanced in which the number of

jobs m exceeds the number of men n. After dualizing the side constraint we obtain

an unbalanced pure assignment problem whose dual is

maximize , + J(10)
i J

.-A, - 0, (i,j) e E (11)

NJ<0, j = 1, m(12)

The dual variable, ifj, is associated with job j and the dual variable, &, is associated

with the man i. The dual problem for the balanced assignment problem, (1)-(4) is

(10) and (11).

SEMI, the Fortran code used to solve the pure assignment problems in the

previous sections of this paper is the software implementation of a shortest aue-

menting path algorithm developed by Kennington and Wang 1171. The algorithm is

a dual method and consists of four phases: column reduction, reduction transfer.

row reduction augmentation. and shortest path augmentation. In each phase both

dual feasibility, cij -A- j - : 0 for all (i,j) e E and complementary slackness

xij(dij- - aj) = 0 for all (i,j) c E are maintained and the procedure works toward

obtaining primal feasibility, (2) and (3). Minor modifications to SEMI were incor-

porated so that aj <_ 0 and (xij - l):rj = 0 tor all (i,j) c E were also maintained

throughout the four phases. The modified code is called UNBALSEM].

B-17

Table 10 presents our empirical results comparing SEMI and UNBALSEMi

for the assignment problem and presents results for the singly constrained unbal-

anced assignment problem. Test runs were performed on an IBM 3081D and a

Sequent Symmetry S81. Every entry in columns 2-6 of Table 10 is the average run

time for three randomly generated problems except for the entries in the last row"

which are for a singly constrained unbalanced assignment problem provided by the

Navy Personnel Research and Development Center in San Diego.

By adding dummy nodes and artificial arcs, one can always convert an unbal-

anced problem to a balanced one. As shown in Table 10, the specialized code for

the unbalanced problem can run four times faster than the corresponding balanced

code. For the 400x600 assignment problems, UNBALSEMI was four times faster

than SEMI on problems in which 200 dummy men and 120,000 dummy arcs were

appended. We also find that for this application, the IBM 3081D is approximately

twice as fast as the Sequent Symmetry S81.

Table 10 here !

13-18

0 VI. SUMMARY AND CONCLUSIONS

We have presented a new algorithm, ASSIGN+I, for the singly constrained

assignment problem. This algorithm is applicable for balanced and unbalanced

0 assignment problems having either an inequality or an equality side constraint. The

algorithm uses Lagrangean relaxation and solves a series of pure sparse assign-

ment problems.

* The empirical results of test runs of the Fortran implementation of the algo-

rithm for balanced problems with inequality and equality side constraints and un-

balanced problems with an inequality side constraint indicate that these three

* codes are very robust and need very few iterations to satisfy the optimality criteria.

Remarkably, near optimal solutions to integer programs with over one-half million

binary variables are obtained in less than seventeen minutes on a Sequent Symme-

* try S81 using a single processor. The results from test runs of ASSIGN+1, MPSX,

and OSL demonstrated the superiority of the new algorithms over state-of-the-art

general purpose software and results from test runs of ASSIGN+1, AB1. and the

Mazzola-Neebe code indicates that ASSIGN+1 is more than three times faster than

ABI and about forty times faster than the Mazzola-Neebe code. While integer

solutions obtained by AB1 are identical to the ones obtained by ASSIGN+1. they

are better than the ones obtained by phase I of the Mazzola-Neebe code.

B-19

Sm m • , m mm m

REFERENCES •

1. V. Aggarwal, "A Lagrangean-Relaxation Method for the Constrained

Assignment Problem," Computers and Operations Research vol. 12 pp. 97.-106,

1985. 0

2. E. Allen, R. Helgason, J. Kennington, and B. Shetry, "A Generalization of

Polyak's Convergence Result For Subgradient Optimization," Mathematical

Programming vol. 13 pp. 309-318, 1987.

3. M. Ball, U. Derigs, C. Hilbrand, and A. Metz, "Matching Problems with

Generalized Upper Bound Side Constraints," Networks vol. 20 pp. 703-721,

1990. 0

4. R. Barr, F. Glover, and D. Klingman, "The Alternating Basis Algorithm for

the Assignment Problems," Mathematical Programming, vol. 13 pp. 1-13,

1977. 0

5. R. Barr, K. Farhangian, and J. Kennington, "Networks with Side Constraints:

An LU Factorization Update," The Annals of the Society of Logistics Engineers

vol. I pp. 66-85, 1986. 0

6. J. Brans, M. Leclercq, and P. Hansen, "An Algorithm for Optimal Reloading

of Pressurized Water Reactors," Operational Research'72, Editor M. Ross,

North Holland Publishing Company: Amsterdam, pp. 417-428, 1973.

7. N. Bryson, "Parametric Programming and Lagrangian Relaxation: The Case

of the Network Problem with a Single Side-Constraint," Computers and Opera-

tions Research vol. 18 pp. 129-140, 1991.

8. H. Everett, "Generalized Lagrange Multiplier Method for Solving Problems of

Optimum Allocation of Resources," Operations Research vol. 11 pp. 399-417,

1963.

9. S. Gass and T. Saaty, "The Computational Algorithm for the Parametric

B-20

• i I i i l II I l J l0

O

Objective Function," Naval Research Logistics Quarterly vol. 2 pp. 39-45,

1955.

10. A. Geoffrion, "An improved Implicit Enumeration Approach for Integer

Programming," Operations Research vol. 17 pp. 437-454, 1969.

11. A. Geoffrion, "Lagrangean Relaxation for Integer Programming,"

Mathematical Programming vol. 2 pp. 82-114, 1974.

12. F. Glover, "A Multiphase-Dual Algorithm for the Zero-One Integer

Programming," Operations Research vol. 13 pp. 879-919, 1965.

13. F. Glover, D. Karney, D. Klingman, and R. Russell, "Solving Singly

* Constrained Transshipment Problems," Transportation Science vol. 22 pp.

277-297, 1978.

14. A. Gupta and J. Sharma, "Tree Search Method for Optimal Core

• Management of Pressurised Water Reactors," Computers and Operations Re-

search vol. 8 pp. 263-269, 1981.

15. J. Kennington and Z. Wang, "An Empirical Analysis of the Dense

Assignment Problem: Sequential and Parallel Implementations", ORSA Jour-

nal on Computing. vol. 3 pp. 299-306, 1991.

16. -J. Kennington and Z. Wang, SEMI Users Guide, Technical Report

90-CSE-20, Department of Computer Science and Engineering, Southern

Methodist University, Dallas, TX 75275, 1990.

17. J. Kennington and Z. Wang, "A Shortest Augmenting Path Algorithm for the

Semi-Assignment Problem," Operations Research, vcl. 40 pp. 178-187, 199.

18. J. Kennington and A. Whisman, "Netside Users Guide," Technical Report

90-CSE-37, Department of Computer Science and Engineering, Southern

Methodist University, Dallas, TX 75275, 1990.

B-21

I
i

19. J. Kennington and F. Mohammadi, "The Singly Constrained Assignment 0
Problem: An AP Basis Approach," Technical Report 93-CSE-25, Depart-

ment of Computer Science and Engineering, Southern Methodist University,

Dallas, TX 75275, 1993.

20. D. Klingman and R. Russell, "Solving Constrained Transportation

Problems," Operations Research vol. 23 pp. 91-106, 1975.

21. D. Klingman and R. Russell, "A Stream Lined Approach to the Singly'

Constrained Transportation Problem," Naval Research Logistics Quarterly vol.

25 pp. 681-695, 1978.

22. Mathematical Programming System Extended, Mixed Integer 0

Programming/370 Program Reference Manual, IBM SH19-1099-1, 1979.

23. J. Mazzola and A. Neebe, "Resource Constrained Assignment Scheduling."

Operations Research vol. 34 pp. 560-572, 1986. 0

24. G. Nemhauser and L. Wolesy, Integer and Combinatorial Optimization, John

Wiley and Sons: New York, NY, 1988.

25. Optimization Subrmucine Library: Guide and Reference, IBM, SC23-0519-1,

1990.

26. C. Ryu and M. Guignard, "Lagrangean Approximation Techniques for the

Simple Plant Location Problem with an Aggregate Capacity Constraint."

Working Paper 91-06-06, Department of Decision Sciences, The Wharton

School, University of Pennsylvania, Philadelphia, PA 19104-6366, 1991.

27. R. Parker and R. Rardin, Discrete Optimization, Academic Press Incorporated:

New York, NY, 1988.

28. H. Salkin, Integer Programming, Addison-wesley Publishing Company:

Reading, Massachusetts, 1974.

29. J. Shapiro, "Generalized Lagrange Multipliers in Integer Programming."

B-22

• ' aa l i In I I I I I

Operations Research vol. 19 pp. 68-76, 1971.

30. J. Shapiro, "A Survey of Lagrangean Techniques for Discrete Optimization,"

Annals of Discrete Mathematics vol. 5 pp. 113-138, 1979.

31. G. Yu, "Algorithms for Optimizing Piecewise Linear Functions and for

Degree Constrained Minimum Spanning Tree Problems," Department of De-

cision Sciences, The Wharton School, University of Pennsylvania, Philadel-

phia, PA 19104-6366, 1991.

B-23

!!• !•• • • :•• •,•!•:'•

i*

00

VINS A

0.-(axp - b)

e 2. I
B-24

a a a
a a S

* a S

* a a

Figure 1. Unique optimum for LD,

viP(8)1

0

* -- m m m m m m m Smm • m m • - •

0

ViP(e)A
0

a \3

560

.1 p

Figure 3. p selection using slope bisection

B-25

Table 1. The assignment problem with an inequality side constraint

Problem C/S SC Normal Bisection Slope Bisection

Size Range RHS f of Time, Solution f of Timel Solution
0 to Iter (mrin) Opt. lter (min) % Opt.

small 11.33 5.42 99.60 11.33 5.43 99.69
1000 med. 13.33 6.50 99.16 11.00 5.30 99.07

large 8.00 3.33 99.53 7.67 3.32 99.53
800x800 small 10.33 4.98 99.48 9.33 4.40 99.48
(256,000 10000 med. 9.67 4.30 99.85 10.33 4.85 99.48

arcs) large 8.33 3.60 99.78 7.67 3.32 99.43
small 10.33 4.79 99.52 9.33 4.44 99.52

100000 med. 8.67 3.93 99.49 8.67 3.97 99.50
large 8.67 3.71 99.62 7.67 3.26 99.57

small 11.00 8.19 99.32 10.67 8.04 99.42
1000 med. 11.33 8.55 99.42 11.00 8.55 99.43

large 7.00 5.42 99.39 6.67 5.24 99.39 •
1000,x00 small 10.33 8.18 99.69 10.67 8.43 99.79
(400,000 10000 med. 10.33 8.01 99.43 9.00 7.09 99.64

arcs) large 7.00 5.62 99.16 6.33 5.22 99.28
small 10.33 7.94 99.73 11.00 8.70 99.73

100000 med. 9.00 6.78 99.65 9.00 6.87 99.65
large 7.00 5.64 99.25 6.33 5.20 99.25

small 11.00 12.40 99.31 10.00 11.44 99.32
1000 med. 12.33 14.28 99.48 11.00 12.75 99.65

large 8.00 9.67 99.81 11.67 14.49 99.92
1200x1200 small 11.67 14.07 99.40 11.00 13.43 99.26
(576,000 10000 med. 12.67 16.04 99.64 11.00 13.10 99.65

arcs) large 9.33 11.36 99.47 12.00 15.99 99.95
small 12.33 14.94 99.44 11.00 13.56 99.30

100000 med. 13.00 15.65 99.48 11.00 12.91 99.66
large 7.33 8.71 99.23 11.00 13.71 99.83

Average 9.63 8.01 99.49 9.44 8.07 99.56 0

Times are wall clock ume on a Sequent Symmetry SS I using one processor.

B-26

Table 2. The assignment problem with an equality side constraint

Problem C/S SC Normal Bisection Slope Bisection
Size Range RHS -

0 to iteri Time' (min %opt iterf Time'(min) %opt

V. small 10.00 4.74 99.35 9.33 4.46 99.56
small 11.67 5.88 100.00 9.67 4.57 99.96

1000 med. 8.00 3.78 99.90 7.67 3.58 99.84
large 9.33 4.35 99.70 9.67 4.61 99.70
v. large 9.67 4.55 99.33 8.67 4.02 98.73

v. small 10.67 5.13 99.70 11.33 5.60 99.87
800x800 small 10.33 5.15 100.00 9.33 4.45 99.91
(256,000 10000 med. 7.00 3.40 99.93 7.00 3.39 99.81

arcs) large 9.67 4.66 99.69 10.00 4.79 99.74
v. large 9.67 4.67 99.75 9.67 4.61 99.79

v. small 11.33 5.54 99.83 11.33 5.49 99.94
small 11.00 5.48 100.00 6.67 4.06 99.74

100000 med. 7.67 3.81 99.92 8.00 4.04 99.85
large 11.00 5.27 99.52 10.33 4.91 99.73
-. large 9.67 4.70 99.76 9.67 4.59 09.F4

v. small 8.33 6.69 99.70 9.00 7.45 99.49
small 11.00 9.03 99.61 9.67 7.93 99.61

1000 med. 8.33 6.64 99.99 8.33 6.82 99.90
large 11.33 9.13 99.79 10.33 8.36 99.97
v. large 10.00 8.12 98.61 9.33 7.45 97.90

v. small 8.33 6.84 99.57 10.33 8.69 99.74
1000x1000 small 9.67 7.87 100.00 10.33 8.49 99.79
(400.000 10000 med. 8.67 7.12 99.93 8.67 7.22 99.98

arcs) large 11.67 9.96 99.74 10.00 8.11 99.31
v. large 10.00 8.16 98.34 8.67 6.93 98.5'7

v. small 8.33 7.09 99.59 9.67 8.16 99.70
small 10.00 8.09 100.00 9.33 7.77 100.00

100000 med. 8.67 7.22 99.96 8.67 7.15 99.96
large 11.67 9.96 99.74 10.00 8.18 99.46

- - -. large 10.00 8.08 96.34 F.67 6.92 9F.6F

v. small 9.67 12.61 99.84 10.33 13.18 100.00
small 9.67 11.94 99.41 9.00 10.89 99.56

1000 med. 8.67 10.79 99.93 8.33 10.24 99.99
large 11.67 14.25 99.83 10.00 11.52 99.98
v. large 10.00 12.19 98.87 b.67 10.18 98.6:

v. small 9.00 11.54 99.71 10.00 13.00 99.71
1200x1200 small 9.33 11.40 99.38 10.00 12.14 99.84
(576.000 10000 med. 8.00 10.27 99.91 8.00 10.41 99.96

arcs) large 11.67 14.52 99.65 11.00 13.68 99.87
v. large 10.00 12.47 99.02 8.00 9.69 99.95

v. small 9.00 11.93 99.72 10.00 12.79 99.72
small '1.33 14.18 99.58 9.00 10.94 99.64

100000 med. 8.00 10.35 99.93 8.33 11.00 99.96
large 11.67 14.76 99.78 10.00 12.40 99.83

.large 10.00 12-56 99.06 8.00 9.76 99.7"

Average 9.96 1 59 99.65 9.31 7.868 99.73

'Times are wall clock time on a Sequent Symmetry $8I using one proCeSsOT.

B-27

,W b CM

wo C

1$C

Z0

% 0,

0S , Cc,
-Z C C

2-.2

b. m

Co C, 00 0.4

t.o .c- . .E

•-- Vo NC .C.

-.w 40.o .. Z" 44 " 0, 0, Z:r, 21 WI %C"-

WI C "

o < ,- c..< E

C'~~~ C4__ ___ ____CNN____1C

V" C• €z 3 C

00

'Ccvi N CZ•. "C E C

s. z = E= ==

_4 C4C'

- 0 C, f C %n 00 00
C ~ ~~ Co r-i~~ .

*~~A zclooZ

C , - - . • ._.I.•

m -0 .0

go E

E 5c E E

< .2c

-B-2

-cc

b. 0

0e Z ?
'0 goo E .0

.2i .19C

'0 -<

0 ca. r

-be a

'C

- -Q 'o~a4<~ 0N vi. < bl -

*C C0g O4 c C ;

Cc 5C@C . c" o

c < CY < .2-. Or I
C4f c c C c c crC% -- ;.:oI z 0 - -c

>10 C;

cc <
W.g C zr C 4"

Q~w V

- 0 -a -~ 'A 7 WitEa V.4 .f

b. r* -a. o
ca _ ___ __ ___ __ ___ __ ____0

* 0 _________________________B-29____

C eC"
a COCt

'0 C; E

do

C ~ ~ ~ c Ic'E'
0

CI c -;

C c

Co 20% .s2 lM<.c

-Cp C> so~g
CC~~~, ccE ea-bZ

c Cl IV c U .- l .~e

CD C C . l -

oi V-E I

r-§ "j c;

£ .S~c

in OW., soC 0 0<40 C -

00 Cor 0 Q-- Otzt=% %

C4 -nf

CC

Sb~~ -c-0c ~

0. C> IV CvUC. c C

c. 0 - -

eq~ r. <'>
c cc. c W")EC

C4 0 nc - >c
E C__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ 0ýe "WC

B-30 r

- -c

an.4
CZ

'ý0 Ic
mooic j .

* - .~J.

'p00

.:0 ~CC

< Vl 0 n % C ftc

-C 0

C. .
- -N.

Eu~C 0 0f.W ~oJw EZZ

-ý .-

C-.C C C

E C4 #-.

C2 C4 -W c

C. 0 .C 4V

Eu w -

Ec E~0 ~
NOV N Ec N W._

-0 Eq =- E u
C.. ExEttC

B-31

Table 7. The empirical comparison of the Mazzola-Neebe phase I code and
ASSIGN+1 solving NxN 100% dense singly constrained assignment

- problems. _

Mauzola-Neebe ASSIGNi 0
N Arcs Side Const

RHS Obj Value Time' Obj Value Time' Solution
MCC) (Sec)Sec) % Opt.

small 10,446.1 10.33 6,351.6 0.61 94.43

40 1,600 medium 4,414.4 12.73 2,991.2 0.56 95.85

large 2,285.1 11.37 2,143.8 0.61 94.41
-I -

small 12,225.2 50.45 6,571.7 1.67 95.72

60 3,600 medium 5,667.1 54.30 3,225.8 1.83 97.53 0

large 2,859.4 46.50 2,248.3 2.00 97.57

small 13,867.4 120.92 6,638.4 3.44 96.42

80 6,400 medium 5,578.7 148.81 3,264.3 3.29 96.28

large 2,616.1 152.02 2,301.8 3.96 97.46

small 12,759.3 331.37 6,271.7 6.09 96.54

100 10,000 medium 5,331.8 303.62 3,135.1 7.18 98.25

large 2,529.0 313.83 2,222.2 6.76 97.23 0

Times are wall clock time on a Sequent Symmetry S8 I using one processor.

B-32 0

0J

Table 8. The empirical comparison of AB1 and ASSIGN+1 solving NxN 30% dense
• singly constrained assignment problems.

ABI ASSIGNOl
N Arcs Side Const

RHS Time' Obj Value Solution Time' Obj Value Solution
(Sec) ' Opt. (Sec) S Opt.

small 68.76 43,326.9 99.04 18.66 43,326.9 98.31

200 12,000 medium 59-11 22,441.8 98.79 19.12 22,441.8 98.62

large 50.16 23,223.1 99.39 18.80 23,223.1 99.22

small 201.22 42,604.7 98.75 50.57 42,604.7 98.57

300 27,000 medium 177.90 29,535.0 99.13 51.62 29.535.0 98.9s

large 138.15 22,880.2 99.91 47.98 22.880.2 99.44

small 430.2 42,490.9 98.67 105.69 42,490.9 98.50

400 48,000 medium 378.5 28,797.1 99.29 98.90 28,797.1 99.0:

large 326.2 23,208.0 99.66 94.27 23,208.0 99.46

small 757.3 44,025.2 99.32 177.53 44.02S .2 99.25

500 75,000 medium 686.9 29,480.1 99.46 158.59 29.480.1 99.35

large 566.0 22.746.8 99.67 167.50 22,746.8 99.63

Times are wall clock time on a Sequent Symmetry S81 using one processor.

B-33

Table 9. Comparison of the integer and real versions of pure assignment codes.
(The Weitek floating poikt accelerator was activated in all runs.)

Problem Size 400x400 800x800 100Ox1000 1200x1200

SEMI (Secs.) 3.66 14.93 26.36 37.26
(integer)

ASSIGN+I (Secs.) 4.00 16.38 28.37 40.71
(floating point)

Increase for floating 9.56% 9.71% 7.62% 9.25%
point arithmetic

B-34

Table 10. CPU times (sec.) on an IBM 3081D and wall clock times (sec.) on a
Sequent Symmetry S81 for balanced and unbalanced pure assignment
problems and singly constrained unbalanced assignment problems.

Size Assignment Assignment+l Side Constraint

SEMIN UNBAL SEMI UNBAL ASSIGN+I

IBM Sequent IBM Sequent IBM Sequent

100x100 0.11 0.19 0.14 0.28 1.89 3.31

100x200 0.44 1.28 0.07 0.16 1.39 2.59

100x300 1.79 3.70 0.14 0.21 2.21 4.17

200x200 0.44 0.69 0.63 1.18 6.84 9.51

200x300 1.07 2.16 0.22 0.49 4.76 8.83

200x400 2.36 5.13 0.26 0.59 5.86 11.39

300x300 1.22 2.14 1.74 3.37 15.76 32.78

300x400 1.70 3.35 0.52 1.15 9.92 18.90

300x500 3.22 6.91 0.53 1.18 10.84 25.46
- --

400x400 2.30 4.18 3.78 7.86 37.83 74.09

400x500 2.23 4.63 0.88 1.92 16.02 31.86

400x600 3.68 8.80 0.90 2.00 16.90 35.72

98x3622 NA NA NA NA 0.28 0.59

Total 20.56 43.16 10.04 20.39 130.50 258.74

dummy men nodes and artificial arcs are added to balance men and jobs.
2 real problem provided by the Navy.

B-35

4 r
I bTechcal Report 93-CSE-34

I0

Solution of Convex Cost Network Flow
Problems Via Linear Approximation

by

Richard V. Helgason
Rajluxmni V. Murthy

Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275-0122

May 1993

This work was supported in part by the Air Force Office of Scientific Research under
Grant Number AFOSR F49620-93-1-0091 and the Office of Naval Research under
Grant Number N00014-92-1619.

C-1

r 0

Solution of Convex Cost Network Flow Problems Via Linear Approximation.

ABSTRACT. This work presents a new approximation approach to solving minimum cost network flow prob- 0
lems with nonlinear cost functions. Approximation procedures are typically based on local approximations.

the reason being that global approximations have to face a trade off between accuracy and the resulting
Sproblem size. We propose a global approximation procedure which leads to the optimal solution through

refinements in the region local to the solution at a given iteration. The resulting problem at each iteration
is solved efficiently, without reformulation. Thus the issue of increased problem size that is associated with

global approximations is resolved. Computational results demonstrate that this method takes only 2$1-30O'X
of the time taken by a traditional method for solving such problems, such as the Franke-Wolfe. The problems

tested were generated randomly.

1. Introduction

Consider the following network flow problem:

min f(z)

s.t. Az = b (P)

0<z<_u

where f(z) is a continuous and convex function defined over a closed convex feasible region F C Wn. F lies

in the positive orthant and is determined by the vector of bounds u E W". the node-arc incidence matrix 0
A4 E W,"'". and the requirements vector b E R'. If f(') = •"•= f,(z,) where f,(',)is a convex function for
all i. we have a separable convex cost network flow problem.

Problenis with the structure defined by (P) arise in several engineering and economic applications. in
general. when increased flow in an arc results in an increased burden or congestion. the cost on the arc can

be approximated by a convex function of the flow on that arc. Some examples of such problems are quadratic

data fitting [1]. water supply applications [4]. electrical networks [7). equilibrium export-import trade models

[121. production scheduling with overtime costs [8]. and traffic congestion models [3]. Other applications (see
also [171 and [251) arise in personnel assignment and logistics [30] and stochastic programming [9] and [33].

It is also possible to convert certain problems in nonseparable form to those which have a separable forni*

[14] and [32].

The numerous applications and the specialized structure have generated considerable interes in the prob-
lem (P). The problem can be solved by any algorithm for general nonlinear programming problems. Several

authors have applied such general purpose methods to (P). Examples of such applications are the Frank-

Wolfe method by Collins et al. [4) and LeBlanc et al. [23), the convex simplex method by Collins et al.

[4] and Helgason and Kennington [16]. the Newton method by Klincewicz [19). [20] and Dembo [10]. the
reduced gradient algorithm by Dembo and Klincewicz [11] and Beck et a). [2]. simplicial decomposition by

Hearn ei al. [15). and relaxation methods by Bertsekas et al. [5]. (6] and Zenios and Mulvey [34]. Problems
with a quadratic objective function have been solved by the conjugate gradient method [22]. Lagrangian
dual coordinatewise maximization [28]. and piecewise linear approximation [26].

C-2

We are interested in a piecewise linear approach for solving the problem (P). Such an approximation
will yield a linear problem which can be solved efficiently and allow exploitation of the underlying structure

to the fullest. Thakur [311 and Geoffrion [131 have developed bounds on the objective function value of

(P) for such approximations. Collins et al. [4] have used this approach to solve water supply applications

of (P). Meyer [24], (25] has discussed and implemented a two-segment approximation. His approach is to

approximate the objective function locally. The reasoning being that global approximations have the curse

of resulting in the need to solve problems with increased dimensions, and therefore, force a tradeoff between

0 the accuracy of the approximation and the size of the resulting problem to be solved.

Our approach is to approximate the objective function globally and refine it locally in successive iterations.

but we solve the resulting piecewise linear problem with a direct method. For a discussion of the method and

its implementation see 127]. The application of this method resolves the dilemma of increased dimensions

* since it does not require a reformulation of the resulting approximation, and therefore. the dimension of the
problem to be solved is no more than the dimension of the original problem (P). The fact that reformulation
is not required also enables us to avoid expensive data manipulation after each successive approximation.

We discuss in detail the approximation and the solution procedure for the problem (P) in the next section.
outline the salient points of the implementation in section 3. present computational results in section 4 and

* close the presentation with a summary of the results.

2. The Solution Methodology

2.1 The Approximation Proccdur(.

The global approximation to

f (r) = F,7) (r
j=1

is given by-

=I)g(z) = I~g,(.z,)

where
ej,, if 0 < -i <5 uJ:

C"", if u'' <5 ri< :;',

and s, is the number of segments or grid points that arc ci is allowed to have. ul u' are the brcakpoints
such that 0 < ujl < U2... < U"' = uj (the capacity of the arc ej). The respective costs co ci Of the

s, segments are the slopes of the line segments joining the endpoints, and since f(r) is convex they form an

ascending sequence. Therefore.

o ; < ,; ... < r;' <X

c-3

*i

I
I

The approximation results in the following piecewise linear problem:

I~

s.t.
=4,(P

0<4z < 4

)- ,

where i= I m, j= I. n and k . si .

The approximation requires only function evaluations and no information about the derivative of the cost

function.

Note that since f (r) is convex it is dominated by g(z) on the entire domain, i.e.

f(z) _5 g(z). VYzF •

Clearly. an optimal solution z" to (Pi) is a feasible solution for (P) and f(z") gives an upper bound on the
optimal objective function value t'(P). Therefore, if r'" is an optimal solution for (P). then f(r") } < r'".

The problem (P) is solved using RESBAS 1271. which is a FORTRAN implementation of the aforementioned S
direct approach to solving piecewise linear problems. The objective function of (P) evaluated at z" is
compared with a lower bound which provides a termination criterion discussed in detail in section (2.3). The
comparison determines whether an (-optimal solution has been obtained, where (is a prespecified tolerance

parameter for the objective function value. Thus. at termination the objective function value is guaranteed
to be within (percent of the optimal value for the problem (P). 0

2.2 Refinement of thr Approzunation

If the optimal solution to (P) does not yield the desired f-optimal solution to (P). the approximation is

refined as follows. Since the flows in the arcs are expected to be approaching the optimal solution. 6reakpoints

not in the vicinity of the current solution are judged to be of little value. Therefore, the approximation is
refined in the neighbourhood of the current solution point, maintaining a constant number of grid points.

As opposed to a fixed grid approach 14] the grid size is reduced with each refinement, and succcssive approx-

imations are increasingly accurate. locally. for each arc.

To further illustrate the refinement process. let each arc have sj breakpoints without loss of generality. If
the flow on arc rj is found to be at the kth segment, the distance d to be refined is determined as follows:

(;~2a . if -k < s, - 1:

= [0. u. if k < 2:

C-4

4 77,

This interval is divided into (sj - 2) equal segments, and the remaining two 6relenpu1. awe set at

-j{ ,, u, if2 < k <s;-1;

u; + 0.5(u' - , "), - ' if k < 2;

o.5u,",,,,•'-2 if. k > 81 - 1.

Thus, each successive approximation results in a refined grid in the vicinity of the current solution, and yields
two long segments in the portion where the solution does not currently lie. In case the solution to the refined
approximation is found to lie in the currently unrefined portion of the arc, the strategy allows the refinement
to shde over to the relevant portion. This process, therefore, enhances accuracy in the neighbourhood where
the solution is expected to lie, along with providing the flexibility of redefining the region to be refined if
the need arises. It also addresses the concern that shrinking the intervals too rapidly may lead to the final
solution being unable to meet the desired accuracy (17].

2.3 The Stopping Crtlerion

At each iteration f(zr) yields an upper bound to f(z"). In addition we need a lower bound to determine
whether the desired accuracy has been achieved. We developed lower bounds using two methods. namely. a

Frank-Wolfe approach and a Lagrangian approach and carried out a comparative study of their computational

performance.

Frank. Wolfe Bound

Proposition .l. I Let y' be an optimal solution to the problem

mrin Vf(.')y

s.t. Ay = b (2.1)

where x" is an optimal solution for the problem (P) at a given iteration. Then

P S(z") ? f(') + Vf(r')(y" - Z*) (2.2)

Pro: See [181

This approach requires the evaluation of the first derivative of f(z). It is worth noting that if f(z) is a

quadratic function, the search for an optimal step size required in the solution of (2.1) is greatly simplified.

Loormnqian Bound

Consider the Lagrangian relaxation of (P)

mm f(r) + C(Az - b) (2.3)

C-5

I

1 0

When 1(z) is a separable function as in this case a bound based on the Lagrangian relaxation is ideal
since the problem (2.3) decomposes into n single variable subproblems. Let f be the optimal solutioa tvJ (2.3). Then since (2.3) is a relaxation of (P) 0

f(z") > f(A) (2.4)

For our purpose we use the duals obtained by solving (P) for the vector v in (2.3).

Pv.,osition !. In the special case where f(z) is a separable quadratic function, the solution procedure 0
for (2.3) is greatly simplified and the optimal objective function value is given by:

4 + b, if0<zi u: , i
i=1

]qus' - (rF(O - T T(i) - i)u, o+ 1b, if Z, > u, (2.5)

where z, = (rA.i - 4j)/ 2 qj. A.j is the ith column of .4. For arc e,, 1i and q, are the linear and quadratic cost
coefficients respectively. F(i). T(i) are its from and to nodes, and

f0.. if0 < z, < u,;
i= 0. ifZ'<0:

U. if z: > ui

Proof: Since f,(Z,) = l:.r +q9,2. therefore. z, = (irrA i - i,)/2q, gives a stationary point, which will also
be the local and global minimum point, for (2.3). Further, since A, represents the &tn arc of the network.
therefore. z, = (7rrii - irT(i) - 4)/2q,. and can be readily evaluated. This value of z, is, however. not
guaranteed to satisfy 0 < zi < ui,. In case it does not lie within the prescribed bounds, since f(r) is convex.
the minimum will occur at the bound closest to this infeasible value of zi. Hence. I, as defined above is the
value at which the minimum of (2.3) occurs and the corresponding optimal objective function value is given

by (2.5).

Even if f(x) is not a quadratic function, the objective function of (2.3) though nonlinear, is separable.
Therefore. solving (2.3) is equivalent to solving n single-variable nonlinear-cost problems with the only
constraints being the bound on the variable. Such problems are not difficult to solve.

2.4 The Algorithm

STEP 0

Approximate (P) by JPo, Divide arc ej into sj segments. Calculate the cost on each •
segment. given by the slope of the line segment joining its end points.

Set loucrbound - -BIG. where BIG is a large number.

Define (. the error tolerance and set k = 0.

STEP I

C-6

* TI

Use RESBAS [to solve is,. Let z; be the solution.

STzPI

Evaluate f(z4) and obtain a lower bound Abd by the Frank-Wolfe or the Lagrangian method.

If 1bd > lowerbound, then lowerbound -. 1bd.

If f(z;4) - Iowerbound

1lowerboundl o

then

stop with z4 as the e-optimal solution and f(z;) as the objective function value

else

continue.

STEP 3

k - k + 1. Approximate the problem (P) by Pk.

Go to step 1.

3. The Implementation

RESBAS has been modified and extended to implement the algorithm. The mnleger FORTRAN imple-
mentation is called PWF\W or PWLAG. depending on whether the Frank-Wolfe or the Lagrangian approach

is used for obtaining the lower bound.

The lower bound is obtained using one of the two approaches in the subroutine BOUND Simultaneously.
the cost function f(z) for P is evaluated at z; and this gives the upper bound at the iteration k. The

refinement of the approximation, discussed in (2.2) is carried out in the subroutine SHIFT. The data struc-

tures are an extension of those used for RESBAS [27]. Two additional arc length arrays store the linear and

quadratic cost coefficients for each arc. SHIFT has an additional node length array curcst which facilitates
the updating of the duals after each refinement. This is necessary since the effective cost of the basic arcs is

likely to change with a change in the approximating function and these changes are nteeded irrespective of

which lower bound technique is used.

The subroutine BOUND requires only one additional node length array for PWLAG which is called REQ.

This array is used to store the requirements vector b, which is needed for calculating the lower bound.
Many more arrays are needed for BOUND in PWFW. In order to solve t2.1) an implementation of a pure
network problem solver is needed. We use NETFLO [191 here, which is an efficient implementation of the

upper-bounded simplex method on the graph. NETFLO uses six basic node-length arrays and we have
added these to RESBAS. In addition, an arc-length array stores the capacity vector u. and two arc-length

c-7

1

arrays. GCRADCST and TOTFLW. are used to store the gradient vector rf(z;) and the direction (Y' - Z;),

respectively.

I The arcs are stored in a backward star format. The starting solution for (2. 1) in the first iteration is the

same as that for solving (AP), which is the advanced start solution in NETFLO. Subsequently, the optimal

solution obtained for (2.1) in a given iteration is used as the starting solution in the next one.

The implementation utilizes an eight segment approximation on each arc. With the results obtained in

[27], this was thought to be a suitable number of segments. However, the implementation can be readily

extended to use a greater number of segments.

4. Computatioual Results

Problem Generation

Due to the lack of a standard problem generator for generating problems of the form (P), we developed one

based on the method of Ravindran and Lee [29]. For a given solution point z. a corresponding dual vector r.

a desired constraint matrix A and a quadratic cost matrix Q. a right hand side vector b and a vector of linear

cost coefficients I are generated such that the point z is a Kuhn-Tucker point. If Q is positive semi-definite,

z is guaranteed to be a globally minimum point for the problem. Though the problems thus generated have

quadratic costs. the solution methodology is capable of handling general convex cost problems.

For our purpose. NETGEN [21] is used to generate a problem of specified dimensions. The problem is

then solved using NETFLO [18]. and the optimal solution thus obtained is used as r. the point at which the

global minimum for the quadratic cost problem will occur. Q is chosen to be a diagonal matrix with positive

elements. This ensures that a separable convex rost network flow problem. with a known optimal solution

and minimum value, is generated. In the case where the resulting problem has very large linear coefficients

the problem is rejected since the linear coefficients will dominate the optimal solution to this problem while

we are interested in quadratic cost problems.

For the purpose of comparison we implemented the Frank-Wolfe (FW) algorithm, a classical method for

solving general convex cost problems. Since the subproblems to be solved for FV are linear network flow

problems. a modification of NETFLO is used to solve these.

Problem Descrnpton

The problems that were generated have number of nodes varying from 50-600 and the number of arcs vary-

ing from 200-15.000. The first set of problems tested have a cost range varying from 1-50. The percentage

of arcs with high cost is fixed at 30. and the number of capacitated arcs is either 20. 25 or 80. The capacity

range varies between 100-500 to 10,000-15.000. This is a typical parameter specification needed for gener-

ating problems using NETGEN. Problems 9-14 are transportation problems and the rest are transshipment

problems. The next set of problems is generated with the intent of having problems with comparatively

higher costs on a greater percentage of arcs. The dimensions and the capacity ranges in this set are same

as in the first. but the cost range is 1-100. the percentage of the capacitated arcs is fixed at 50 and the -@
percentage of high cost arcs is 30 or 80.

c-8

• • a II . l I I I II I I I l

C.-M..u9pwa-I £ Eenece j
The Sequent Symmetry S81 has been used for all computational studies. The times reported are wall

clock times in seconds and do not include the time taken for input of the-data or the output of the results.

Table I lists the time taken by FW, PWFW and PWLAG to solve 20 problems, to a required accuracy of
99%, generated with the above specifications.

The time ratio in the table gives the time taken by PWFW or PWLAG as a fraction of that taken b%
FW for the same problem. PWLAG can obtain solutions with the desired accuracy in 2%-53% of the FW

time, depending on the problem size. IWFW takes 5%-77% of the FW time. The computational advantage
of PWLAG or PWFW over FW is seen to be extremely substantial as the problem size increases. On the
average, PWFW takes 36 percent of the time taken by FW and PWLAG takes 24 percent. We note that the
computational advantage of PWFW and PWLAG over FW increases with the problem size. For problems

15-20. which are transshipment problems with 500-600 nodes and 8000-15,000 arcs, PWFW terminates with
an e-optimal solution in only 5%-I 1% of the FV,' time. PWLAG performs even better and requires only
2%-5% percent of the time taken by FW. From our computational experience the improvement in time

ratios with problem size is seen to be more pronounced for transshipment problems as compared to that for
transportation problems. Figures 1-3 are graphs of the time taken by the three algorithms for problems 1-6.
7-14 and 15-20 respectively and clearly demonstrate the performance superiority of P\VF%\" and PWLAG

over FW.

PWLAG takes less time than PWFW in general, and this is mainly attributed to the fact that the
quality of the bound obtained through the Lagrangian relaxation is better, that is, the bound is tighter, and
therefore, the termination criterion is satisfied in a fewer number of iterations. if the final objectiv' functioti
values obtained by PWVF\V and PWLAG are compared. the former is found to terminate with a lower value

in general. The fact that the bound in PWLAG requires less computational time than the bound in PWF*

also contributes to the time savings observed. Specially. for quadratic cost functions. calculation of the
Lagrangian bound is much cheaper than obtaining the Frank-Wolfe bound. The latter requires the solution
of a network flow problem. On the average, the percentage of time required to calculate the Frank-Wolfe
bound by P\\'F\\" is seen to be nearly double of that required to obtain the Lagrangian bound by PWLA(;.

This may or may not be the case for general convex cost problems.

We also determined the percentage of time that Pl\'FW and PWLAG expend in the refinement process

and on the average it was found to be comparable for the two algorithms.

Since PFVFW and PWLAG are integer implementations while F is a rea[FORTRAN code, we developed
real versions of P\\'FW and PWLAG called PWFWR and PWLAGR. respectively, for the purpose of
comparison. Table 2 lists the times taken by these versions to solve the original set of problems to a
minimum accuracy of 99%. As expected. the real versions do not have the same computational advantage
over FW as the integer implementations do. On the average the time taken by PW\'FW'R for the 20 problems

is 88 percent of the FW time and that taken by PWLAGR is 55 percent. The real versions do not always
perform better than FW but for the large problems the time savings are substantial. PWLAGR takes 7-14

percent of the F%%" time on problems 1.5-20 and the time taken by PWFWR is 11-27 percent. It should be
noted that since the integer implementations can be used to obtain solutions with the desired accuracy of
997, the real versions are developed for the purpose of comparative study alone and need not be used.

C-9

I

r!

I The requirement that the objective function value be at least 99% accurate at termination is quite strin-

gent, specially since the FW method is known to perform poorly as the solution approaches the optimal.

The accuracy requirement is therefore relaxed to 95% and the problem set is tested again. The times taken 0
by the 3 algorithms are tabulated in Table 3. As expected the computational advantage of PWFW and

PWLAG for this level of accuracy is slightly less than before. The average time taken by PWFW is 47%

j of the FW time and that taken by PWLAG is 30% which is again a considerable amount of computational

advantage.

Table 4 lists the times taken by FW, PWFW and PWLAG to solve the 20 problems in the second set. The

odd and even numbered problems in this set have 30% and 80% high cost arcs respectively. These problems

were generated to gauge the effect of increasing the cost range and the percentage of high cost arcs on the

time performance. From the results in Table 4 we conclude that the time savings on the two algorithms

for this set of problems are quite similar to that for the first set of problems. with PWFW taking 40"N and 0
PWLAG taking 257c of the FW time, and therefore the cost structure does not have a considerable effect on

their performance. It should be noted though that in two cases PWFW terminates with a solution which is

guaranteed to be above 967 optimal but does not meet the requirement of 99% accuracy. Iteration count

is provided as an optional termination cy;erion for cases where the desired accuracy is not met within 15

iterations, where an iteration consists of obtaining the solution to the current approximation and evaluating 0
the upper and lower bounds. The upper limit on the number of iterations is chosen to be 1.5 since it is

observed that the solution does not show substantial improvement thereafter in most cases.

5. Other Strategies and Modifications

In most cases it was observed that the values of the lower and upper bounds improved at each successive

iteration. This is not guaranteed by our approach. We. therefore. implemented a strategy based on .NIeyer's

[24] paper that guarantees a monotonically decreasing objective function value of (P)at each iteration. This

requires that the optimal solution to ht at the i& iteration be a breakpoint in the next iteration for all basic

and nonbasic arcs. Previously this was enforced at each refinement for the nonbasic arcs alone and in fact.

it was essential to do so in order to satisfy the definition of a nonbasic arc. With this adaptation (PVMY).

the solution does improve ai each iteration, but the strategy does not achieve any computational advantage

over the previous one. espec~allv since the desired accuracy is not achieved for half of the problems in the

set. An overall comparison of the times taken by PWMY. PWF\W. PWLAG and F\W is given in Table 5. h

is to be noted that the time listed for PW\NIY is the time taken for obtaining the solution with the indicated

accuracy achieved rather than the desired accuracy.

C-10

• • • t tt t i i al l ic-i

6. Summary and Further Research

The current computational experience establishes the effectiveness of our piecewise linear approach for
solving quadratic convex cost problems. It has a considerable advantage over an implementation of the
Frank-Wolfe method. Large problems can be solved to within 99% of the optimal solution in as little as

4% of the FW time. On an average PWLAG takes 24 percent of the time taken by FW for the set of 20

randomly generated problems that were tested.

In the absence of standard benchmark problems of the form (P)with known optimal solutions and objective
function values, our present study suffices to successfully demonstrate the computational superiority of our
approach over a traditional method such as the Frank-Wolfe.

* A natural extension of the work would be a solution procedure for nonseparable convex cost problems.
We are also interested in investigating if an enhancement of our implementation could obtain at least locally
optimal solutions for concave cost problems, which have extensive applications but unfortunately are difficult

problems to solve.

1
c-il

*t

i I

I
Table I TIME? TAKEN FOR ORIGINAL PROBLEMS

R W W W I TIME I IE1OPTIMALI

FW PF RATIO' WLA RATIO VALUE

1 1.64 .94 .57 .48 .29 -8592216
2 1.76 1.11 .63 .97 .55 -5766709
3 8.66 2.71 .31 1.54 .18 -76484447
4 7.63 3.38 .44 2.25 .29 -54936770
5 11.21 3.77 .34 2.67 .24 -40527843
6 8.41 4.16 .50 2.88 .34 -45898496
7 56.06 11.89 .21 6.39 .11 -261093554
8 38.16 20.74 .54 13.30 .35 -208477916
9 29.93 17.55 .59 12.65 .42 -116588999
10 34.53 14.38 .42 10.13 .29 -129294946
11 11916 44.47 .37 32.99 .28 -72016847
12 99.66 37.22 .37 27.09 .27 -76165575
13 145.93 109.41 .75 73.47 .50 -64705809
14 206.42 106.87 .52 74.61 36 -52456271
15 1502.02 129.52 .09 78.07 .05 -589931746
16 1163.17 121.03 .10 61.08 .05 -533283869
17 2198.61 119.69 .05 69.87 .03 -572189947
18 1546.18 95.56 .06 53.72 .03 -489618838
19 3700.19 177.23 .05 105.41 .03 -476943806
20 2841.69 135.55 .05 69.88 .02 -440758194

Average Ratio .3.5 .24

:Wall clock seconds on the Sequent Symmetry S81 *With respect to FW

C-12

=0

Table II TIMEt TAKEN FOR ORIGINAL PROBLEMS ON REAL VERSIONS

JURB W I TIMEO W TIME. OPTIMAL I

___FW PWFWR RATIO PLAG RATIO VALUE

1 1.65 2.42 1.47 1.36 .83 -8592216
2 1.75 2.50 1.43 2.19 1.25 -5766709
3 8.68 5.25 .61 3.20 .37 -76484447
4 7.62 11.94 1.57 5.01 .66 -;4936770
5 11.24 10.23 .91 5.71 .51 -40527843
6 8.34 12.60 1.51 6.49 .78 -45898496
7 55.98 31.07 .55 13.83 .25 -261093554
8 38.65 53.12 1.37 44.63 1.15 -208477916
9 29.51 41.26 1.40 28.17 .95 -116588999
10 34.46 34.38 1.00 22.41 .65 -129284946
11 118.79 107.17 .90 74.30 .63 -72016847
12 99.71 105.97 1.06 58.61 .59 -76165575
13 145.69 231.61 1.59 167.62 1.15 -64705809
14 206.44 263.75 1.28 147.75 .72 -52456271
15 1500.35 408.55 .27 165.85 .11 -589931746
16 1167.24 308.73 .26 129.52 .11 -533283869
17 2199.81 320.64 .15 152.70 .07 -572189947
18 1542.60 210.47 .14 112.04 .07 -489618838
19 3689.05 420.14 .11 222.94 .06 -476943806
20 2834.04 313.88 .11 139.84 .05 -440758194

Average Ratio .88 .55

*%Vail clock seconds on the Sequent Symmetry S81 "With respect to FIV

C1

I
C-13

I

I
Table III TIME1 TAKEN FOR ORIGINAL PROBLEMS WITH 95% ACCURACY

F TIME TIME. OPTIMAL

1 1.21 .76 .62 .37 .30 -8592216
2 1.13 1.00 .88 .58 .51 -5766709
3 6.32 2.13 .34 1.11 .18 -76484447
4 4.72 2.42 .51 1.73 .37 -54936770
5 7.76 2.76 .36 1.90 .24 -40527843
6 5.35 4.17 .78 2.30 .43 -45898496
7 39.99 10.42 .26 5.62 .14 -261093554
8 24.06 16.91 .70 8.44 .35 -208477916
9 16.52 14.49 .88 9.34 .57 -116588999
10 17.47 11.54 .66 8.05 .46 -129284946
11 63.79 35.92 .56 24.85 .39 -72016847
12 53.78 27.66 .51 23.04 .43 -76165575
13 82.67 76.62 .93 65.34 .79 -64705809
14 107.34 86.86 .81 53.06 .49 -52456271
15 1107.08 111.28 .10 67.92 .06 -589931746
16 806.97 96.14 .12 39.34 .05 -533283869
17 1534.34 121.18 .08 58.28 .04 -572189947
18 1051.52 78.72 .07 45.18 .04 -489618838
19 2441.02 155.65 .06 87.61 .04 -476943806
20 1815.70 124.83 .07 .58.04 .03 -440758194

Average Ratio .47 .3o

+Wall clock seconds on the Sequent Symmetry S81 "With respect to FW

C

C-14

S.... - i~l lll i f I m I lnlli I • H INiN0

I
Table IV TIME1 TAKEN FOR PROBLEMS WITH HIGHER COSTS

R PA ACCUR- TIME TIME+j OPTIMAL
~NUM FW IWW ACY(%) RATIO+ PWLA 1 RATIO~ VALUE

1 3.14 1.46 99.5 .46 .89 .28 -18802914
2 1.94 .97 99.3 .50 .71 .37 -29763764

* 3 7.77 3.95 99.2 .51 2.34 .30 -143248991
4 6.59 3.25 99.0 .49 2.01 .30 -149300640
5 8.63 4.88 99.5 .57 2.95 .34 -97459866
6 8.87 5.27 9.3 .59 3.38 .38 -103358663
7 44.58 19.32 99.1 .43 9.53 .21 -480888274
8 45.90 22.11 98.5 .48 13.62 .30 -357156520
9 40.54 20.55 99.7 .51 12.17 .30 -190760881
10 33.28 20.24 99.8 .61 12.59 .38 -212969924
11 100.2e 55.18 99.2 .5.5 36.70 .37 -113:30760.5
12 111.40 52.14 99.1 .47 35.88 .32 -12443.5503
13 191.76 109.81 99.0 .57 76.47 .40 -84864094
14 185.58 128.9.5 99.6 .69 82.89 .45 -9447236,x
15 1584.02 141.67 99.3 .09 88.48 .06 -5 3 8275)6 s'-

*16 1299.63 138.23 98.8 .11 70.08 .0.5 -76-5267147
17 1916.40 123.30 99.4 .06 67.56 .04 -809483905
18 2111.48 126.92 99.4 .06 73.18 .03 -71138419."
19 3522.58 170.65 99.3 .05 102.27 .03 -606614724
20 3731.50 156.23 99.7 .04 92.43 .02 -554617067

*Average Ratio .39 .2.5

+Wall clock seconds on the Sequent Symmetry S81 +With respect to FW
*Accuracy achieved less than 99% 7

C1

0i

0!

0t

I

I
Table V TIMEI TAKEN FOR ORIGINAL PROBLEMS

IPRBII TIME ITIME+ IAWY CCUR-t TIME
IUM FW PWFW RATIO+ IPWLAGRýATIO+ WMY CY(%) JRATIO÷

1 1.64 .94 .57 .48 .29 .75 99.2 .46
2 1.76 1.11 .63 .97 .55 1.06 99.1 .60
3 8.66 2.71 .31 1.54 .18 2.80 99.2 .32
4 7.63 3.38 .44 2.25 .29 4.44 99.4 .58
5 11.21 3.77 .34 2.67 .24 4.09 99.3 .36
6 8.41 4.16 .50 2.88 .34 4.36 99.3 .52

7 56.06 11.89 .21 6.39 .11 26.32 98.5" .47
8 38.16 20.74 .54 13.30 .35 23.77 97.0" .62
9 29.93 17.55 .59 12.65 .42 19.07 99.0 .64
10 34.53 14.38 .42 10.13 .29 36.78 98.9" 1.07
11 119.16 44.47 .37 32.99 .28 69.40 98.51 .58
12 99.66 37.22 .37 27.09 .27 79,26 98.8" .80
13 145.93 109.41 .75 73.47 .50 172.01 98.6" 1.18
14 206.42 106.87 .52 74.61 .36 205.86 98.8' 1.00
15 1502.0: 129.52 .09 78.07 .05 363.17 98.8 .24
16 1163.1' 121.03 .10 61.08 .05 194.60 99.2 .17 0
17 2198.6 119.69 .05 69.87 .03 260.11 98.3' .12
18 1546.11 95.56 .06 53.72 .03 200.09 99.3 .13
19 3700.1 177.23 .05 105.41 .03 366.14 91.7' .10
20 2841.6 135.55 .05 69.88 .02 235.53 99.2 .08

Average Ratio .35 .24 .50

**Wall clock seconds on the Sequent Symmetry S81 +With respect to FW
*Accuracy achieved less than 99%

-0

C-16

' = m m It Il II m 0

7. Refezeuces

O
(11 Bachem, A. and B. Korte, Minimum Norm Problems Over Transportation Polytopes, Linear Algebra

and its Applications, Vol. 31, pp. 103-118, 1980.

[2] Beck, P., L. Lasdon and M. Engquist, A Reduced Gradient Algorithm for Nonlinear Network Flow

Problems, ACM Trasactions on Mathematical Software, Vol. 9, pp. 57-70, 1983.

[3] Beckmann, M., C.B. McGuire and C. Winsten, Studies in Economics of Transportation, Yale University

Press, New Haven, Conn., 1956.

[4) Collins, M., L. Cooper, R. Helgason, J. Kennington and L.J. LeBlanc, Solving the Pipe Network
Analysis Problem using Optimization Techniques, Management Science, Vol. 24, pp. 747-760,

1978.

[5] Bertsekas. D.P. and D. El Baz, Distributed Asynchronous Relaxation Methods for Conrer Network

Flow Problems. SIAM Journal of Control and Optimization, Vol. 25, pp. 74-85. 1987.

[6] Bertsekas. D.P., P.A. Hosein and P. Tseng, Relaxation Methods for Network Flow Pro6lems witth ('on rer

Arc Costs, SIAM Journal of Control and Optimization, Vol. 25, pp. 1219-1243. 1987.

[7] Cooper, L. and J. Kennington, Steady State Analysis of Nonlinear Resistive Electrical Networks Using
Optimization Techniques. Technical Report IEOR 77012 Southern Methodist University. Dallas.

TX. 1977.

[8] Cooper. L. and L.J. LeBlanc. Stochastic Tranportation Problems and other Network Related ('onrxc
Problfms, Naval Research Logistics Quarterly, Vol. 24. No. 2. 1977.

[9] Dantzig. G.B.. Linear Programming and Extensions, Princeton University Press. Princeton. NJ. 1963.

(10] Dembo, R.S.. A Primal Truncated Newton Algorithm with Application to Largf-Scalc Nonlinear Net.

work Opinn:alion, Mathematical Programming Study. Vol. 31, pp. 43-72. 1897.

[11] Dembo. R.S. and J.G. Klincewicz, A Scaled Reduced Gradient Algorithm for Network Flow Problen,,

with Con tex Separable Costs, Mathematical Programming Study. Vol. 15, pp. 125-147. 1981.

(12] Glassey. C.R., A Quadratic Network Optimization Model for Equilibrium of Single Commodity Trade

Flows, Mathematical Programming, Vol. 14, pp. 98-107. 1978.

(13] Geoffrion, A.M., Objective Function Approximation in Mathematical Programming, Mathematical

Programming. Vol. 13, pp. 23-27, 1977.

[14] Hadley. G., Nonlinear and Dynamic Programming, Addison-Wesley. Reading, MA. 1964.

[15] Hearn, D.-., S. Lawphongpanich and J.A. Ventura, Restricted Simplicial Decomposition: Computa-

tions and Extensions. Mathematical Programming Study. Vol. 31. pp. 99-118. 1987.

1161 HUlga-on. R.. and J.L. Kennington. An Efficient Speciali:aton of thf ('onr ,z Simpir Method for

Nonhnear Network Flow. Technical Report No. IEOR 77017. Dept. of Computer Science and

C-1 7

SI

Engineering, Southern Methodist University, Dallas. TX, 1978.

(17] Kao, C.Y. and R.R. Meyer, Secant Approximation Methods for Convex Optani:ation, Mathematical

Programming Study, Vol. 14, pp. 143-162, 1981.

118] Kennington, J.L. and R.V. Helgason, Algorithms for Network Programming, Wiley-lnterscience, NY,

1980.

(19] Klincewicz, G.J., A Newton Method for Convez Separable Network Flow Problems, Networks, Vol. •

13, pp. 427-442, 1983.

(201 Klincewicz, G.J., Implementiny an 'Eza c' Newton Method for Separable Convex Transportation Prob.

lems, Networks, Vol. 19, 1989.

[21] Klingman, D.. A. Napier and J. Stutz, NETGEN: A Program for Generating Large Scale Capacata ed

Assignment. Transportation, and Minimum Cost Flow Network Problems, Management Science,
Vol. 20. NO. 5. pp. 814-821. 1974.

[22] LeBlanc, L.J.. The Conjugate Gradient Technique for Certain Quadratic Network Problems Naval

Research Logistics Quarterly. Vol. 23. pp. 597-602. 1976. 0

[23] LeBlanc, L.J.. R.V. Helgason and D.E. Boyce, Improved Efficiency of the Frank- Wolfe Algorithm for

Convex Network Programs. Transportation Science. Vol. 19, 445-462. 1985.

(24] Meyer. R.R.. Two-Segment Separable Programming, Management Science, Vol. 23. No. 4. pp. 385-

395. 1979.

[25] Meyer. R.R.. Computational Aspects of Two-Segment Separable Programming. Mathematical Pro-

gramming. Vol. 26, pp. 21-39. 1983.

[26) Minoux. M.. A Polynomial Algorithm for Minimum Quadratic Cost Flou Probjims. European Journal 0
of Operational Research. Vol. 18. pp. 377-387. 1984.

[27] Murthy. R.. and Helgason R.V.. A Direct Sim plcr Algorithm for Network Flou Problrms with Pitce.

wise Linear Costs, Technical Report No. 93-CSE-7. Dept. of Computer Science and Engineering.

Southern Methodist University, Dallas, TX. 1993.

(28] Ouchi A. and i. Kaji. Lagrangian Dual Coordinateuwis Maximization Algorithm for Network Trans-

portation Problems with Quadratic Costs, Networks, Vol. 14, pp. 515-530, 1984.

[29] Ravindran. A. and H.K. Lee. Computer Experiments on Quadratic Programming Algorithms. Euro-

pean Journal of Operational Research, Vol. 8, pp. 166-174, 1981.

[30] Saaty. T.L., Optimization in Integer and Related Extremal Problems. McGraw-Hill. NY, 1970.

[31] Thakur. L.S.. Error Analysis for Convex Separable Programs: The Picetwisr Linear Approximation

and the Bound.s on the Objective Function Value. SIAM Journal on Applied Mathematics. Vol.

34: pp. 704-714. 1978.

C-18

S! ! i ! ! c- !8

2"". . ." " -

[32] Wagner, H.M., Prncipies of Oper.tionu Research with Applicatons to Managerial Decision, "

Prentice-Hall, Englewood Cliffs, NJ, 1969.

[33] Wets, R., Progrnaminng Under Uncertainity: The equivalent Convey Program. SIAM Journal on

Applied Mathematics, Vol. 14, pp. 89-105, 1966.

[34] Zenios, S.A. and J.M. Mulvey. Relaxation Techniques for Strictly Conute Network Problems. Annals

of Operations Research, Vol. 5, pp. 517-538, 1985/6.

C1

0i

C-19 I

I

Graphs of the Timmao Takwaa with Iua~cuing Numnber of Segausaar

F~g 1SOLUTION TZMES(1-6)

I. -

- A

3 44)

400
-200

2 C. --- --- - -

4000

7 o o oo i

W2500
S2000-

1-500-

:cvoo_
5001

C-20

Computational Study of Implementational
Strategies For The Network Penalty

Method

Nandagopal Venugopal and R. V. Helgason
Department of Computer Science and Engineering.
Southern Methodist University, Dallas, Texas-75205

September 20, 1993

Abstract

In this paper we present two implementations of the network penalty
method as proposed by Conn. Gamble and Pulleyblank. The results
of our computational testing and comparative study with the network
simplex method are presented.

1 Introduction:

The simplex method for solving linear programs has been effectively adapted
to solve minimum cost network flow problems, wherein the special network
structure can be exploited. The network simplex method [1) is still one of
the most popular techniques for solving these problems. Gamble, Conn and
Pulleyblank [2] suggested a penalty algorithm for solving the minimum cost
network flow problem. This algorithm bears a strong resemblance to the
network simplex method and is a specialization of the Conn [3, 4] and Bar-
tels' [5] nonlinear penalty function methods. The penalty method, unlike
the network simplex, permits infeasible flows, i. e. the flows in the arcs are
not required to be within the bounds. Infeasible flows incur a nonnegative
penalty in the objective function and this encourages the flows back towards

D-1

0

feasibility. In this version of the penalty algorithm (as in [21) only the basic
flows are permitted to be infeasible and the nonbasic flows are required to be
at bound. It should be noted that this is only for convenience and the same S
idea could be extended to treat infeasible nonbasic flows.

We begin by introducing the notations being followed in our presentation.
Let G(m, n) be a connected, directed graph with m nodes and n arcs. Let
A be the node arc incidence matrix for the graph G, where each row of A 0
represents a node in G and each column represents an arc in G. In order
to ensure that the matrix A has full row rank, a column corresponding to a
root arc is appended. The node r on which the root arc is incident is called
the root node. Each element aij of A is defined by:

+1 if i is the "from" node (tail) of arc j
aij -I if i is the "to" node (head) of arc j

0 otherwise

For every arc e,, let F(ej) denote its from node and T(ej) its to node. Let
c be the vector of arc costs, u the upperbounds on the arc flows, and z
the actual flows. Let the node requirements be given by the vector b. The
minimum cost network flow problem in standard form can then be defined
as:

minimize CM 0
subject to Ax = b

The matrix A can be partitioned into [BIN), where B is the basis and N is
the set of nonbasic arcs (which are at a bound). In the graph G, we define
TB to be the rooted spanning tree corresponding to the basis B.

In the penalty algorithm, the basic arcs are permitted to have infeasible
flows and as such we consider the basis B to be partitioned as [FIMIP] where
F represents the basic arcs which carry feasible flows, M the set of basic
arcs which have violations of their lower bounds (or negative flows) and P,
consisting of basic arcs with flows exceeding their upperbounds. Each unit
of infeasibility incurs a penalty a in the objective function. We can thus
express the penalty problem as:

D-2 S

| l I I I I

minimize Oc,(m)

subject to Am = b
mB unrestricted
0 <ZN < UN

where 0,(z) is given by:

0"()= C'Z + E cjz, + Z(cj - ctx + Z:(c, + CIx
AEF AiM jiEP

Thus for a given set of basic flows, the current objective function coefficients
(penalty function coefficients) can be computed from the following relation-
ship:

, c, ifj E (FUN)
c• -a ifjEM
c3+a ifj E P

We define the vector ir to be the usual network simplex duals on TB, calcu-
lated using only the original costs on the basic arcs. Let the vector ir' denote
the actual (correct) duals, i.e. , the duals that reflect the penalty associated
with any infeasible basic arcs in TB. The duals 7r' are calculated using the
penalty function coefficients c'. As in the network simplex, if an improving
direction is found in the pricing step, then by adding this improving nonba-
sic arc to the spanning tree TB a cycle is created. Flow is augmented on
such a cycle until 0(z) is no longer improving. This occurs when the flow
augmentation is such that the leaving arc reaches a bound when Fj7/al + I
bounds have been crossed on the cycle, where T7 is the reduced cost of the
entering arc ei.

The paper is organized as follows. In section 2 we describe our implemen-
tations of the network penalty algorithm of Conn, Gamble, and Pulleyblank
[2]. Section 3 discusses our first implementation-a dual updating tech-
nique. In section 4 we present a cycle tracing technique for pricing used in
our second implementation. Section 5 discusses the problem set used in the
computational testing of our implementations. In section 6 we present the
computational results and conclusions.

D-3

S

2 Network penalty algorithm implementa-
tion:

Before presenting our implementations, it is necessary to describe, briefly,
the method for choosing the leaving variable. This is the same in both our
implementations. Recall that the basis B has a corresponding rooted span-
ning tree TB in G. Let ej be the entering arc. Adding this arc to TB creates
a cycle. We define the forward cycle FC(e1) as F(ej), e,, followed by the
unique path in TB connecting T(ej) and F(ej). An arc ek E FC(e,) is
called a forward arc if, in the path from T(ej) to F(e 3), its orientation is
{ F(eA), ek, T(ek)}. It is said to be a reverse arc otherwise. The reverse of
FC(ej), denoted by RC(ej), is called the reverse cycle of ej and its forward
and reverse arcs can be defined in a similar manner. We define a node k of •
the cycle FC(ej)[RC(ej)] to be the common node for the cycle if it is com-
mon to the paths connecting F(ej) and T(ej) to the root node r. If k is the
common node for the above cycles then k is also the node in the cycle that
is the closest to the root node, where the distance of a node from the root is
measured by the number of arcs in the path connecting it to the root.

Suppose the arc ej is at lowerbound [upperbound]. Then flow will be
increased on FC(e3)[RC(e,)]. Forward arcs in FC(ej)[RC(e.)] that have
feasible flows, or infeasible flows due to lowerbound violations are likely can-
didates to leave. In the first case they could leave upon attaining their
upperbound, while in the second case they also could have the option of
leaving at the lowerbound. Similarly, reverse arcs in FC(ej)[RC(ej)] which
will have flow decreased could be candidates to leave if they are feasible and
the flow change reduces the flow in them to the lowerbound, or if they are
infeasible due to upperbound violations and the flow change results in their •
attaining either of their bounds. In any event, all such arcs in which a non-
negative change could result in their attaining a bound are candidates for
leaving the basis. All possible nonnegative flow changes that could create
a bound crossing are sorted in ascending order. The arc corresponding to
the [r-'/a]th flow change is chosen to be the leaving variable in [2]. How-
ever, in our implementation we pick the arc corresponding to the [j7'/aj th
flow change to be the leaving arc. Thus in our implementation we restrict
the number of violations that can occur to be strictly within the improving

D-4 S

range for 4%(x). We now present the pseudocode for our implemenitation of
the network penalty algorithm. We have two distinct methods for handling

* the computation of correct duals, the dual updating technique and the cycle
tracing technique, hereafter referred to as DU and CT respectively. Either
can be used in the scheme described below. At points where they differ we
describe them explicitly.

Network penalty algorithm:

Step 1:
Let B = [FIMIPI be any basis. Let z be the initial primal solution.
Note that z need not satisfy the arc bounds.
Choose some a > 0.

Step 2:
DU:
Compute the current penalty function coefficients c' (as discussed in
section 1).

* CT:
Here we use the original cost vector c

Step 3:
DU:
Calculate the dual solution ir' using the penalty coefficients c'.
CT:
Calculate the normal duals 7r using the original arc costs c.

Step 4: Select the entering variable.

DU:
V ej E N = [LIU] compute V, = c1 - ir'. + r1

Choose an arc ei E U 3 •' > 0, ei E L - z' < 0;
providing an improving direction.
If no such arc exists, go to Step 10.
CT:
Using suitable selection crietria select a possible candidate arc
ej, to enter the basis.

D-5

Determine the correct reduced cost F' by tracing the
cycle created by adding ej to TB.
As in the DU implementation, choose an arc ei if it provides an
improving direction.
Else go to Step 10.

Step 5:
Adding ej to TB creates a cycle (with two possible orientations).
Let the working cycle C(ej) be defined by:
C(ej) FC(e3) if e E L,

RC(ej) if e E U.

Step 6: Determine the leaving variable and amount of flow augmentation
on the cycle.

Let If = {4}
Let r,- {4}
For every forward arc ek in C(ej), let

rf= rf {uk--Xk} if ekEF,

1 F! {- xk, -Xk} if ek E M. 0

For every backward arc ek in C(ej), let

F,. U I {Xk} if ek E F,
{Xk - Uk, Xk} if ek E P.

F = rf u ,I

Step 7:
Let p =
If p < IF, then the problem is unbounded for the current 0
value of a.
In [2] it is suggested that the algorithm stop at this point.
However, in both our implementations, instead of stopping,
we perform a simplex type pivot.

D-6 •

• • a a a | i | i | | 0

Step 8:
Pick the arc corresponding to the p"' smallest element in r to
be the leaving arc.

• Let A be the ;0" smallest element in r, the amount of flow
augmentation on C(ej).

Step 9: Perform the pivot operation
Update x by augmenting A units of flow on C(e).

* (For every forward arc in C(ej) add A units of flow and for
every backward arc subtract A units of flow.)
Pivot in the entering arc and delete the leaving arc from B.
DU:
Using the Dual Updating scheme, update B.

SGo to Step 4.
CT:
Carry out a normal dual update on only the modified portion of the tree.
Go to Step 4.

* Step 10: Stopping Condition.
If the flows x are feasible then stop with an optimal solution.
Else, increase ot and return to Step 1.

The two implementations presented above, differs principally in the man-
ner in which the duals are computed. This in turn affects the manner of
pricing the nonbasic arcs, determining a suitable candidate arc to enter the
basis. Consider an arc ej which is a candidate to enter the basis. In the dual
updating technique, since the correct duals ir' are maintained, the reduced
cost 7 for the nonbasic arc computed using these duals would reflect the
infeasibilities, if any, present in the basis. Thus the choice of the entering
arc can be made on the basis of its reduced cost computed directly from
the duals. On the other hand, in the cycle tracing technique, the duals 7r,
computed using only the original arc costs, do not reflect penalties for any
infeasible flows present in the basis. Thus, in selecting an arc to enter the
basis, we first compute its reduced cost, T using 7r, and then correct it by
doing a trace of the cycle formed by adding it to the basis. This cycle trace
is done to determine the effect of any infeasible flows present in the cycle

D-7

0s m

on the reduced cost of the entering arc. Thus the correct reduced cost e is
available only after doing the cycle trace. The decision on whether to let e3
enter the basis is now made based on 7j.

Network problems are highly degenerate. It is therefore quite possible
for a basic arc to be at a bound. Depending on the direction of flow aug-
mentation on the cycle, it is possible for these degenerate arc flows to have
two costs. But we restrict such arc flows to have just one cost, equal to the
original cost, and if the flow augmentation is such that the arc flow becomes
infeasible, we will then treat it as if it were a blocking arc that reached a
bound immediately. We thus permit the algorithm to make degenerate piv-
ots. This is necessary, since otherwise the algorithm could terminate with a
suboptimal solution.

3 Dual updating technique:

As mentioned previously, with this technique we maintain the correct duals.
We initiate the algorithm with any basis B and flows x. The basic flows x.
need not be feasible, but the nonbasic flows x, are assumed to be at bound.
For every basic arc ej, its correct cost c• is computed (as in section I). The
dual 7r' at the root node r, is set equal to 0. To obtain the other dual val-
ues we do a depth-first traversal of the tree from r, setting the reduced cost

Sof each arc e3 E B to zero. Thus, knowing the dual at one of the nodes •
for an arc, the dual at the other node is immediate by addition or subtraction.

For every node k in the tree we maintain a small amount of node-label
information. Level(k) gives the height of the node in the tree. Note that
level(r) is 0. The height is the distance of the node from the root r. Next(k)
gives the following node in a thread which provides a particular depth first
traversal of the tree. Arcid(k) gives the index of the arc in the tree that is
connected to k and is on the path to the root. Finally, Down(k) is the pre-
ceding (predecessor) node in the path connecting k to the root. The arcid at
a node points to input information about the arc such as its from node, cost 0
and upperbound. Using the data structure described above we now present
details of the dual updating implementation for step 3 of the network penalty

D-8

algorithm.

Step 3 - DU: (Computing the duals on the tree)

n 'I r
n2 -- next(nl)
while (height(n2) > 0) do:

e 4- arcid(n2)
C 4-- current penalty coefficient for arc ej (see section 1)

SJ7r1++c• if n2-F(ei)7r.2 = r'~ - cj if n2 T(ei)

n2 -- next(n2)
Sni 4-- down(n2)

enddo

Steps 4 - 8 of the network penalty algorithm describe how to select a suitable
arc ej to enter the basis, how much flow A is to be augmented on the cycle
C(ej), and try to determine the arc in the cycle that is to leave the basis.

* The pivot operation in step 9 affects the duals in the tree in two possible ways.

When flow is augmented on the cycle, it is possible that arcs which were
initially feasible now violate their bounds and vice versa. We describe this as
a change in the character of the arc. When this happens, the arc cost before
and after the pivot is different. Thus nodes attached to the tree through this
arc, after the pivot, will have changed dual values. When the leaving arc is
deleted from the tree, the tree becomes disconnected. The nodes detached
by the above operation are reattached to the tree (or rehung) through the
new entering arc. The duals of these nodes are now dependent on the cost
of the entering arc and thus all nodes which are in the rehung portion of the
tree will have new dual values.

In the dual updating technique when flow is augmented on the cycle we
check to see if any of the arcs in the cycle change their character. If so,
we do a complete dual update of all nodes above the common node of the
cycle. If not, we will update the duals only on the rehung portion of the
tree. Note that if no arc changed its character we do not have to compute c'

D-9

since it remains the same. We now present our scheme for updating the duals.

Step 9 - DU: Updating the duals

ej +- entering arc
if (3 an arc ek E C(ei) that has changed its character) then

c +- common node for C(ej)
n1+- c
n2-- next(nl)

while (height(n2) > height(c)) do:
ek 4- arcid(n2)
c'k current penalty coefficient for arc ek (section 1)

In2 : { i+Ck ifn2=F(ek)r ",, - cdk if n2 =T(ek)

n2 next(n2)
ni down(n2)

enddo
else

p +-- node through which ej is attached to the tree 0
nl 4- p

n2 -- next(nl)
if (ej is directed away from the root) then

Ci
endif 0
while (height(n2) > height(p)) do

(Note that we are computing the duals only on the rehung portion of the tree)
7rn2 - 7r n2 -+t 7j

n2 +- next(n2)
n1 *- down(n2) 0

enddo
endif

4 Cycle Tracing Technique 0

In the cycle tracing technique the duals maintained are the normal duals.
These are based only on the original arc costs and thus do no reflect the

D-1O 0

S...• • m mm l a a mm tra n

infeasibilities that may be present in the tree. The solution process, as in
the dual updating technique, can be initiated with any basic solution x which
need not be feasible with respect to the arc bounds. The duals are now de-
termined for TB in a manner identical to that in step 3 of DU, except that
for each arc ek E B we use the original arc cost ci, instead of the penalty
coefficient c. Thus step 3 of the network penalty algorithm is the same for
both DU and CT implementations with the above modifications.

* Step 4 of the network penalty algorithm selects the entering variable.
Since the duals are incorrect, the pricing operation is more complicated than
in the DU implementation. In the CT implementation we price each non-
basic arc using the normal duals. We have two possible outcomes for this
operation. If we find any arc that appears to be improving under this pric-

-* ing scheme, we choose an arc that affords the best improvement and make
that arc a candidate to enter. But, we now have to confirm that it is in-
deed an improving direction by computing its correct reduced cost. We do
this by tracing the cycle created by adding this arc to TB and determining
the penalties that are incurred by the infeasible arcs (if any) present on that
cycle. If it is. indeed, improving, we then choose it to be the entering variable.

The second outcome that is possible is that there are no improving arcs
using this pricing scheme. This unfortunately does not guarantee that there
are no improving directions, in the presence of infeasible arcs in TB. In that
case we may have to consider each nonbasic arc in turn and trace the cycle
created by adding it to TB in order to determine its correct reduced cost.
before ruling it non-improving. This leads to unnecessary cycle traces. We
present a simple bound that enables us to eliminate some non-essential cycle
traces.

Proposition 4. 1:
Let n be the number of infeasible arcs in TB. Let a > 0 be the penalty
associated with every unit of infeasible flow. Let 7 be the reduced cost of a
nonfavorable nonbasic arc ej. That is, T > 0 if ei E L and T < 0 if ei E U.
If also, .c - (n x a) > 0 for ei E L and F+ (n x a) < 0 for ei E U, then e3
cannot provide an improving direction. 0

Thus any nonbasic arc that satisfies the above criterion can be eliminated

D-11

from consideration and the corresponding cycle trace can be avoided. How-
ever, the above bound does not eliminate all non-essential cycle traces. We
now present a selection criteria that can be used to determine the entering
variable.

Step 4.1 - CT: Selection criterion for determining a candidate for the
entering variable

newpr - 0
n - number of infeasible arcs
for (every nonbasic arc ej) do:

c- 4- Cj - 7rF(e,) + l•T(e,)

if(ei E U) then

endif
if (T7 + (n x a) > newpr) then

enter --

newpr -- • + (n x a)
endif

enddo
if (newpr --1 0) then

add ej to TB
determine 7 by doing a cycle trace on C(ej)else

(stopping criterion: Step 10 of the penalty algorithm)
if (n > 0) increase a and restart the algorithm (return to step 1)
if (n = 0) terminate with an optimal solution

endif

In our implementation, instead of pricing all the nonbasic arcs and picking
the best among them, as indicated above, we price a set of nonbasic arcs and
pick the best in that set. Arcs having the same to node constitutes one set.
Having selected a candidate arc to enter the basis, we now need to determine
if that arc indeed provides us with an improving direction. We do this by
considering the cycle created by adding this arc to the basis and determining
the contribution of any infeasible arcs in the cycle to the reduced cost of the

D-12

S...0

potential candidate . After accounting for this contribution, if the arc still
provides an improving direction we will choose it to enter, else we return to
the selection criterion and consider the next nonbasic arc If no nonbasic arc
can provide an improving direction then we terminate either with an optimal
solution or increase alpha and return to step I of the penalty algorithm. We
now present an implementation for determining the correct reduced cost C,

for the candidate entering arc ei by tracing the cycle C(ej).

* Step 4.2 - CT: Trace the cycle C(ej)

ej candidate entering arc
c'F - reduced cost using normal pricing
C0 {FC(e1), if erEL
•C(ej)- RC(ej), if ej E U
for (V ek E (C(ej) n TB)) do:

if (ek is a forward arc) then
C 6 a+Cr if Xk>uk

Sc•-ca if Xk <O

0 elseif (ek is a reverse arc) then
C -ca if Xk >Uk

4- •+a if Xk<O
endif

enddo
if (ej E L) then

endif
C 4- F

if (cj is improving) then
choose ej to enter

else
discard ej

endif

As in the dual updating technique, following the flow augmentation, the
duals have to be updated. In this case the updating has to be done only
for the rehung portion of the tree and the implementation is similar to the

D-13

0

situation in the dual updating technique when no arc in the cycle has changed
its character.

5 Generation of Test Problems:

In generating the test problems for evaluating the performance of the network
penalty algorithm, we had a specific goal in mind. We were interested in
evaluating the performance of the algorithm mainly in solving capacitated
minimum cost network flow problems, although we did test its performance
on both assignment and transportation problems.

We used the network generator NETGEN [6] to generate our test prob-
lems. We generated three sets of problems. Problem set A consisted of 10
capacitated minimum cost network flow problems, with 400 nodes and 3000
arcs. The problems had 95% of the arcs capacitated. Problems 1-5 had a
cost range of 1-10000, while problems 6-10 had costs ranging from 1-5000.
In the above two groups, the problems progressively had relaxed arc capac-
ities. That is. in problems 1-5, problem 1 was the most tightly capacitated
while problem 5 had the widest range of arc capacities. Problem 1 had arc
capacities varying from 25%-50% of the average supply at the source nodes.
while for problem 5 the arc capacities were more relaxed. varying from 130%-
200% of the average supply. The arc capacities varied similarly for problems

6-10. Table 1 lists the parameters that are common for the above 10 prob-
lems. Table 2 gives the problem parameters that vary in the above problems. 0

TABLE 1: Problem parameters common to the problems in problem set A.

Cost range = 1-10000 for problems 1-5 and 1-5000 for problems 6-10

No. of No. of No. of No. of Total Tran shipments % High % Arcs
Nodes Sources Sinks Arcs Supply Sources Sinks Cost Arcs Capac.

I

400 20 80 3000 400000 5 20 10 95

D-14

I

TABLE 2: Variable problem parameters for problems in set A

Upper Bound
Prob. Random Range
No. # Seed

Min. Max.
Al 13502460 5000 10000
A2 27895462 10000 15000
A3 48739284 15000 20000
A4 74837287 20000 30000
A5 38293723 30000 40000
A6 38293723 5000 10000
A7 27895462 10000 15000
A8 48739284 15000 20000
A9 74837287 20000 30000

p AlO 38293723 30000 40000

Problem set B consists of 3500 nodes and 15000 arcs capacitated minimum
cost network flow problems. There are 5 problems in this set and the philos-
ophy behind the choice of their parameters is similar to that for problem set
A. Table 3 gives the common data for the above problems. while table 4 lists
the parameters that vary for the above problems. Problem set C consists
of the standard NETGEN problems 1-35. These are the same problems as
described in [6]. The parameters for problem set C are not included here
and can be obtained from [6]. However since we use the random number
generator on our system, the optimal objective values obtained are different
from those given in [6]. These values are given later when we discuss the
results.

TABLE 3: Problem parameters common to the problems in problem set B

No. of No. of Cost Range Total % High % Arcs
Nodes Arcs Min.7Max. Supply Cost Arc Capac.

3500 15000 1 5000 1400000 10 95

D-15

TABLE 4: Variable problem parameters for problems in set B

Upper Bound
Prob. Randomi No. of No. of Transshipments Range
No. No. Seed Sources Sinks Sources Sinks M' . Max.

B1 84635377 70 280 18 70 .5000 10000
B2 54575469 100 300 20 75 10000 15000
B3 75635879 60 200 10 45 15000 20000
B4 45657670 100 200 10 45 20000 :30000 0
B5 65855524 80 170 10 45 1:10000j 40000

6 Computational Results: 0

We compared the performance of both the dual updating and the cycle tracing
implementations of the penalty algorithm with that of the network simplex.
We used the network simplex code NETFLO of Kennington and Helgason
(1] in our testing. Both the penalty implementations were built with NET-
FLO as the base. thereby ensuring that all three codes shared very similar
data structures and starting procedures. In the penalty implementations we
set the penalty a to be 3 times the input parameter maximum arc cost.
where 3 is usually in the range 0.5 - 3.0. In trying to determine a suitable .3
that would minimize the total number of iterations requited. each problem
was solved over the above range and for each case we report the ones that
yielded the best results.

The three codes were first tested on the problems in set A. The dual
updating method was able to produce an improvement ranging from 8% -

15% in terms of the number of iterations needed to solve to optimality. over
NETFLO. The results for the DU implementation on problems in set A
are reported in table 5. DU out performed NETFLO in terms of the num-
ber of iterations required, and excluding problems 6A and TA it produced
improvements ranging from 8% - 19%. It was able to produce only a 5% im-
provement in the case of problem 6A and 0.84% improvement in the case of
7A. NETFLO however was faster on all of the problems. DU taking about
25% - 50% more time. This is due to the additional updating operations that

D-16

4

are involved in the penalty codes. This makes each iteration of the penalty
code more expensive. In the dual updating technique there is an additional
overhead in step 9, where the duals are updated. The DU implementation

* resorts to a more extensive dual update whenever an arc on the augmenting
cycle changes its "character" and this happens quite frequently. This addi-
tional work load is more apparent in problems 3A and 6A where we find that
the 8 that results in the smallest number of iterations does not also produce
the fastest solution time. This is because the fewer iteration solution takes
more dual updates than the one that takes more iterations but is faster. We
will present a more detailed analysis towards the end of this section.

TABLE 5: Performance of DU vs. NETFLO on problems in set A

Prob. NETFLO DU % Objective
No. Iter. Time, Tv 0F iter. Time, TD Imp. TD/TN Value

I (Seconds) (Seconds) Iter
IA 2147 2.24 1.95 1846 2.87 14.02% 1.28 2268269087
2A 2047 2.01 2.00 1648 2.64 19.49% 1.31 2397270438
3A 1815 1.62 1.27 1527 2.3.5 15.87% 1.45 2117538641

1.80 1609 2.28 11.35% 1.41
4A 1430 1.29 0.90 1224 1.89 14.41% 1.46 1936741441
5A 1344 1.20 1.35 1233 1.82 8.26% 1.52 1846214623
6A 2023 2.03 1.23 1922 3.10 4.99% 1.53 1261636794

1.90 2021 2.96 0.10% 1.46
7A 1665 1.62 2.10 1651 2.50 0.84% 1.54 1191949354
8A 1656 1.46 1.80 1501 2.09 9.36% 1.43 911586498
9A 1484 1.41 1.11 1351 2.00 8.96% 1.42 992651321
10A 1430 1.27 2.10 1213 1.81 15.17% 1.42 11128832934

The performance of the cycle tracing implementation CT on the prob-
lems in set A are given in table 6. The improvements in terms of the number
of iterations required with respect to that of NETFLO is smaller than that
obtained with DU. The improvements ranged from 5% - 14% and in the case
of problems 6A and 9A it was -12.6% and 0.0% respectively. The reason for
the poor performance of CT is not very apparent. We expected its perfor-

mance to he on par with that of DU. Time wise also. its performance was
inferior to that of DU. But this is to be expected because of the inefficient

D-17

pricing technique that is used. Step 4.2 detailed in section 4 is the source of
the large overhead associated with the CT implementation. Since the duals
are not the right duals, a cycle trace is necessary to determine if an entering
arc is indeed an improving one. This is an expensive operation. and nut
always fruitful. Implementation of proposition 4.1 tries to limit the number
of wasted or "null" cycle traces. But it is a very loose bound and though it
is able to eliminate a majority of the unnecessary cycle traces it is not com-
pletely successful. As in the DU implementation, the # that produces the
best improvement in the number of interations. does not always correspond
to the oi-, .nat produces the fastest solution times. A major reason for this
is the number of null cycle traces that are performed. Again. a more detailed
analysis is presented at the end of this section.

TABLE 6a Performance of CT vs. NETFLO on problems in set A

Prob. NETFLO CT % [Objective
No. Iter. Time, TN a Iter. Time, TC Imp. Tc/T.v Value

(Seconds) (Seconds) Iter

IA 2147 2.24 1.26 1962 3.82 8.627 1.71 2268269087
.55 2995 3. 1 -085; 157

2A 2047 2.01 1.57 1932 3.68 5.62% 1.83 2397"270438 1
3A 1815 1.62 2.31 1661 2.80 9.04% 1.78 2117538641
4A 1430 1.29 1.59 1343 2.26 6.08% 1.75 1936741441

1.63 1316 2.49 7.97% 1.93

SA 1344 1.20 1.55 1272 2.11 5.36% 1.76 1846214623
1.95 1 1I 1.99 4.2T71 1.66

6A 2023 2.03 2.40 2278 3.73 .12.6% 1.84 1261636794
7A 1665 1.62 2.45 1551 2.86 6.85% 1.77 1191949354
8A 1656 1.46 2.20 1521 2.58 8.15%- 1.79 911586498
9A 1484 1i.41 2.67 1483 2.50 0.00% 1 .77 9926513241
10A J 1430 1 1.27 1.35 1220 2.09 14.69% 1 1.65__ 111128832934

Figure I illustrates the improvements achieved by the DU and CT imple-

mentations of the penalty algorithm, over NETFLO, in terms of the number
of iterations required to solve the problem to optimality. The DU implemen-
tation performs much better than CT on all but one of the problems. and
out performs NETFLO. Figure 2 plots the % improvement in the number
of iterations for each problem, obtained using DU and CT. Figure 3 plots
the ratio of the penalty time to the network simplex time for each problem,
using the two implementations. Obviously DU is better than CT, though it
is inferior to the NETFLO times.

D-18

0

0

Problem Set A

2400

* 'I NETFLO -2200 o

2000
D

."°

16600" "

z 1400 """,L

1200
1 2 3 4 5 6 7 8 9 10

Problem No.

Figure 1: Iterations: Total number of iterations required

Problem set A
20 1 T

S15

>_ 0" - -- - - - - - - - -

.2

F-5 DU

2 . i

-10 .. cr

-15
1 2 3 4 5 6 7 8 9 10

Problem No.

Figure 2: Iterations: % improvement over NETFLO

D-19

Problem set A
1.7

': 1.7 "-0'" "• ' DU •

..........

1-3

1.2
1 2 3 4 5 6 7 8 9 10 0

Problem No.

Figure 3: Time: Run time efficiency of DU and CT to NETFLO

We next tested the penalty codes on the standard NETGEN problems 0
[6]. Problems 1-35 of [61 were solved using both DU and CT and their per-
formance compared with that of NETFLO. Problems 1 - 5 are 100 x 100
transportation problems; problems 6 - 10 are 150 x 150 transportation prob-
lems: problems 11 - 15 are 200 x 200 assignment problems; problems 16 - 27
are 400 node capacitated network problems; and problems 28 - 35 are un- 0
capacitated 1000 and 1500 node network problems. The maximum arc cost
allowed was set to 10000 instead of 100. This is to keep our testing consis-
tent with that in [2]. The results of this testing are given in table 7 for DU
and table 8 for CT. The performance of the two penalty implementations
were fairly similar on the above test set, though DU had better performance
times than CT on all but the uncapacitated network problems. NETFLO
out performed both DU and CT with regards to running times on all the
above problems. Both implementations produced good improvements in the
number of iterations required for the assignment problems. The performance
on the transportation problems 1 - 10 was not very consistent. For the ca-
pacitated network problems 16 - 27 DU did better than CT. This is because,
in capacitated problems there are more infeasibili- ties and the overhead of
the DU implementation is less than that of the CT implementation. Also
for the uncapacitated network problems, the CT implementation takes less
time than the DU implementation. This is because, under more simplex-
like circumstances the number of "null" cycle traces are much less and the
penalty overhead in the CT technique is to some extent reduced.

D-20

TABLE ?: Performance of DU vs. NTFYLO on problems in set C

Prob. NETPLO DU % Objective
No. Iter. Time. TN i Iter. Time. TD lImp. TDITV Vldue

(S-ons) (Second) Iter
IC 672 0.79 0.75 584 0.89 16.08% 1.13 20616842
c 710 0.82 0.71 703 1.14 1.00% 1.39 19782567

3 773 0.93 0.7S 753 1.34 2.59% 1.44 14680646

4C 691 0.91 0.73 64 1.15 6.51% 1.26 13729316
sc 779 1.10 OAS 7T4 1.46 7.07 1.33 1152575S
6C 1391 2.08 0.82 11 2.54 14.38% 1.22 22228918
Tc 1386 2.45 1.00 I14 3.03 9.52% 1.24 16272T27
_SC 1328 2.38 0.78 1283 3.27 3.39% 1.37 18400181

9C 1503 2.95 0.75 1426 3.76 5.12% 1.28 12040215
ibc 1496 2.98 0.84 1293 3.61 13.57% 1.21 14695S01
11C 2242 1.32 0.61 1729 1.97 -22.8V 1.30 47352
12C 2439 1.72 0.95 2049 2.36 16-.00 1.37 326853
130 2495 1.91 0.72 1941 2.69 22.20% 1.41 248242
14C 3559 2.10 0.65 2086 2.95 11.57% 1.41 247036
15C 0 33S 2.29 0.72 2074 3.19 11.18% 1.39 212597
16C 963 0.63 1.58 812 1.08 15.68% 1.72 6815524469
17C 1035 0.70 2.40 918 1.06 11.30% 1.53 2646770386

18C 923 0.62 1.40 754 0.94 18.31% 1.53 6663684919
1.6_5 807 0.88 11?2.5 ___ 1.44

19c . 1053 0.71 1.20 840 1.02 20.23% 1.43 2618979806
20C- 1338 0.98 1.34 11087 1.70 18.76% 1.74 6749969302
21C 1262 0.96 1.08 971 1.28 23.06% 1.34 2631027973
22C 959 0.72 1.32 810 1.24 15.54% 1.74 6621515104

23C 1312 0.94 1.15 938 1.35 28.51% 1.44 2630071408
24C 1775 0.98 2.02 1465 1.58 17.46% 1.62 6829799687

25C 2507 1.57 1.20 2161 2.76 13.*0% 1.76 6396423129

26C 1085 0.54 1.82 996 1.02 8.20% 1.91 5297702923

27C 1900 1.07 1.43 11555 1.79 18.16% 1.69 4863992745
28C 3450 3.21 1.82 3234 5.71 6.26% 1.78 11599233408

9 3769 3.32 1.18 3278 8.22 1370-3r 2.48 11700773092
2.10 3R70 6.14 7.93% 1.85

30C 4465 3.65 1.36 4002 8.05 10.37% 2.20 8782721260

31C 4354 3.55 1.32 3818 8.08 12.31% 2.28 8577913734
1 1.86 4133 6.99 5.08% 1.97

32C 5704 7.06 1.95 5086 14.10 10.93% 2.00 17996365110

33C 5964 6.93 1.44 5039 15.10 15.51% 2.18 184248939300
34C 7933 8.36 2.05 6418 17.73 16,20% 2.12 14596094907

35C 7692 8.88 1.09 6499 23.03 15.51% 2.59 143359003861
1.79 6991 16.60 9.11% 1.87

D-21

TABLE 8: Performance of CT vs. NETFLO on problems in set C

-PErob. N ETFLO CT -% Objective
No. Iter. Time, TN d Iter. Time. Tc Imp. Tc/TxV Value

(Seconds) (Seconds) Iter
62 0.,79 0.82 608 1.19 9.52% 1.51 20616842

=2 710 0.82 0.83 67 1.30 5.35% 1.60 19782567
3X 773 0.93 0.79 746 2.22 3.49% 2.3V 1468LW

0.81 2 1.60 0.13% 1.72
4C 691 0.91 0.90 671 1.52 2.89% 1.69 13729316
.SC 779 1.10 0.65 723 1.77 7.19% 1.62 11525755
6C 1 1391 2.08 0.86 1199 2.92 13.80% 1.40 22228918
7C 1386 2.45 0.92 1211 3.59 12.3W 1.45 16272727 0
8W 1328 2.38 1.45 1384 4.07 -1.96% 1.70 18400181
9i 1503 2.95 0.82 1502 4.94 0.07% 1.67 12040215
o-c 1496 2.98 1.40 1382 4.49 7.62% 1.49 14695801
lic 2242 1.52 0.75 1807 2.51 19.40% 1.63 47352
12C 2439 1.72 0.90 1779 2.64 27.06 1.56 326853
13C 2495 1.91 0.73 2076 3.19 16.779 1.69 248242
140 2359 2.10 0.51 1814 4.76 23.10% 2.23 247036

0.55 2092 3.79 11.32% 1.78 1

15C 2335 2.27 0.85 2334 4.38 0.04% 1.93 212597
16C 963 0.63 1.20 716 1.15 25.65% 1.83 6815524469

2.35 929 1.10 3.53% 1.75

17C 1035 0.70 2.60 988 1.31 4.54% 1.87 2646770386
18C 923 0.62 1.38 775 1.04 16.03% 1.68 6663684919
19C 1053 0.71 1.55 925 1.31 12.16% 1.82 2618979806 I
20C 1338 0.98 2.14 1195 1.78 10.69% 1.80 6749969.302 1
21C 1262 0.96 106 974 1.39 22.82% 1.38 2631027973
22= 959 0.72 1.98 911 1.33 5.01% 1.85 6621515104
23C 1312 0.94 1.26 808 1.38 31.55% 1.45 2630071408
24C 1775 0.98 2.55 1480 1.57 16.62% 1.51 6829799687
25C 2507 1.57 1.70 2250 2.80 10.25% 1.84 6396423129 1
26C 1085 0.54 2.30 9,7 0.97 11.80% 1.80 5297702923
27C 1900 1.07 1.22 1483 2.16 21.95% 2.00 4863992745

2.48 1699 1.94 10.58% 1.80 •
28C 3450 3.21 1.32 3082 6.41 10.67% 1.94 11599233408
29C 3769 3.32 1.88 3477 6.67 7.75% 2.02 11700773092
30C 4465 3.65 1.79 4020 7.26 9.97% 1.97 S782721260
31C 4354 3.55 1.84 4190 7.69 3.77% 2.17 8577913734
32C 5704 7.06 2.11 5186 13.36 9.08% 1.82 17996.365110
33C 5964 6.93 1.75 5588 21.92 6.30% 3.20 184248939300

2.16 S772r 12.94 3.22% 1.89 •

34C 7933 8.36 1.78 7263 17.63 8.45 2.18 14596094907
35C 7692 8.88 1.83 8932 18.73 9.88 2.05 14335900.3861

2.23 7018 16.08 8.76% 1,76

D-22

Problem Set C

8000

7000 NTL
•70o Et'FLO -- S.

6000 DU ...

0 5 10 15 20 25 30 35

Problem No.

Figure 4: Iterations: Total number of iterations required

Problem set C

35L

.4. -!S

30 "3U•

Sc

S200

10

,;- -- --- -- - - - - - - - -

-5 0 5 10 15 20 25 30 35

Problem No.

Figure 5: Iterations: % improvement over NETFLO

D-23

30• D •

Figure 4 depicts the performance of DU and CT with respect to NET-
FLO in terms of the number of iterations required. Figure 5 shows the %
improvement, in terms of the number of iterations, achieved by DU and
CT over NETFLO, while Figure 6 gives the ratio of the times needed by a
penalty implementation to that of NETFLO for each problem.

Problem set C

2.2

2

3 1.8-1.6

•.- " " - " ""DU -

"1.4 1.

C. 1.2

SI I I I
I t

0 5 10 15 20 25 30 35

Problem No.

Figure 6: Time: Run time efficiency of DU and CT to NETFLO

At this point it is important to point out a few things. The convergence
of the penalty method is very sensitive to the value chosen for the penalty
a. Also, in [2] the authors sugggested that the range of the arc costs should
influence our choice of ci. To this end we decided to tie in the penalty with
the maximum arc cost. Also, in our networks, any artificial arcs will have
a cost equal to number of nodes in the tree times the maximum arc cost. S
Thus for trees with a large number of nodes, artificial costs could become
very large. Thus the penalty a chosen would be ineffective unless it was
able to match these large costs. However too large a value for a inhibits
infeasible arc flows and hence defeats the purpose. So we opted to use a
two-phase approach while solving the problems in set B. We used the net- 0
work simplex until we had reduced the flows on all artificial arcs to zero. We
then applied the penalty code from that point on. All comparative statistics

D-24

|| | | | | *0

4g

with NETFLO are based starting from this point. Only DU was used in
testing on problem set B. The results of the testing are summarized in table 9.

TABLE 9: Performance of DU vs. NETFLO on problems in set B

Prob. NETFLO DU % Objective
No. Iter. Time, TN Iter. Time, TD Imp. TD/TN Value

(Seconds) (Seconds) [ter
1IB 26367 69.54 2.31 24143 105.64 8.43% 1.52 8362010359
2B 22328 50.81 2.31 19610 72.52 12.17% 1.43 6721794329
3B 21312 35.94 1.72 19680 70.98 7.66% 1.98 7879914744

2.05_ 20221 62.56 5.12% 1.74-
4B 23670 42.35 2.07 20525 78.27 13.29% 1.85 7216585110

3.00 21034 64.68 11,14% 1.53
.5B 22525 34.02 1.41 19281 81.85 14.40% 2.41 7412956255

_2.89 20364 54.66 9.59% 1.61 1

Problem Set B
27000 ,

26000 NETFLO -

25000 DU

C 24000..

23000

0=• 22000

z 21000
2 0 0 0 0 "

19000

2 3 4 5

Problem No.

Figure 7: Iterations: Total number of iterations required

D-25

0-• m•m •m I

Figures 7 and 8 graph the performance of DU in solving problem set B.

Problem Set B 0
1.75

1.7

1.65

- 1.6

• 1.55

1.5

"1.45

1.4
1 2 3 4 5

Problem No.

Figure 8: Time: Run time efficiency of DU to NETFLO 0

Based on our testing we conclude the following.

* The convergence of the penalty algorithm is very sensitive to the value
of the penalty a.

@ For large networks, where the initial starting basis has too many arti-
ficial arcs, the penalty a has to be high enough to match the artificial 0
costs. This renders the method inefficient. A composite starting fea-
ture becomes necessary to overcome this problem.

* The DU implementation was more efficient and consistent than the
CT implementation. Both implementations performed better on prob-
lems with a wider range of arc capacities. This is because, in tightly
capacitated problems it takes more iterations to remove infeasibilities

D-26

in i l l I I I II0

and the number of infeasibilities that occur are also quite high.

*s * Though the penalty algorithm does require fewer iterations than the
network simplex, the network simplex is more efficient and takes less
work per iteration, and this results in faster solution times.

TABLE 10:

*Prob. JSL Dual Updates Ol7 Dual Updates
No. Total per Iter. Total per Iter.
3A 1.80 66206 41 1.27 73131 47
6A 1.90 95980 47 1.23 105724 _ 5_ 5
3B 2.05 2579586 127 1.72 2871147 153
4B 3.00 2725966 129 2.07 3081665 150
15B 2.89 2217494 108 1.41 2803285 145

29C 2.10 201850 58 1.18 277826 84
35C 1.79 553704 79 1.09 728892 112

We would now like to present a brief analysis of the work per iteration
distribution in the penalty implementations. In tables 5 - 9 we can see that
for a few of the problems, the /3 or .e value of the penalty a that produces
the best results in terms of the number of iterations does not necessarily
correspond to the fastest time solutions. Table 10 above lists some of the
problems which exhibited this characterstic with- the DU implementation.
After a careful scrutiny of the various computations that occur during each
iteration we determined that the number of duals that have to be updated
over all is a good measure of the work done. For each dual update also re-
quires certain other updates on the tree. We collected statistics corresponding
to the total number of duals that are updated in a run for both cases, i.e.,
for the run with 63 such that the quickest solution is obtained (P3 L) and one
with the #3 that converges with fewer iterations but taking more time (OiHl).
As we can see the quicker solution requires fewer dual updates and hence
fewer of the other updating operations. Also, each time the higher value of 13
produces the faster solution times. This can be explained as follows. Higher
#3 values result in fewer infeasibilities. Thus many flow augmentations are

in the feasible realm and this roughly mimics the network simplex. Higher
infeasibilities result at lower 63 values, and while this reduces the nmnber of
iterations, the penalty overhead increases the solution time. Figure 9 depicts

D-27

0

the average number of dual updates that are carried out per iteration, for
the two different 8 values, for the problems in Table 10.

160160 , , ,
,; : ~ ~...................... =~ .L

-140 . '"bet.H.

120 /0

S100go

60
<-.... 0
40

3A 6A 3B 4Q 5B 29C 35C

Problem No.

Figure 9: DU implementation: Dual updates per iteration.

The above anomaly occurs for the CT implementation also, but for dif-
ferent reasons. The dual updating in the CT implementation is very similar
to that in NETFLO. So the main overhead is due to the failure to detect
"null" cycle traces during the pricing operation. Table 11 compares the num-
ber of null cycle traces that are performed for the two values of 3. As before
/3L corresponds to the run which takes less time and 3H corresponds to the
one that takes fewer iterations but more run time.

From the table it is clear that whenever more "null" cycles are traced,
the running time also increases. The "saved" column corresponds to the
number of null cycles that are prevented by invoking proposition 4.1. Thus,
in spite of the rather loose bound it implies, the proposition is quite effective
in eliminating unwanted cycle traces. Also, one would expect the bound to
function more effectively at lower values of 0, since it is tighter. The fact 0
that this does not appear to he the case always is because of the distribution
of the infeasible arcs. Figure 10 displays the null cycles that are traced for

D-28

each 0 for problems in Table 11.

TABLE 11

"Prob. PE L "Null" Cycles Pm "Null" Cycles
No. Taced Saved' Traced Saved
IA 1.55 84 33063 12 839 33083
4A 1.59 428 27963 1.63 432 31491
5A 1.95 3 27635 1.55 145 28618
30 0.81 0 30399 0.79 1000 41860
14C 0.55 148 78704 0.51 2538 74632
16C 2.35 20 7794 1.20 664 8747
27C 2.48 64 24146 1.22 907 22925
33C 2.16 2192 39719 1.75 16337 32545
35C 2.23 2660 64501 1.83 5902 51409

18000

16000 BETA-L -

14000 BETA-H.

12000 :

S10000 "

I)6000

4000

2000

0
1A 4A 5A 3X 14C 16C 27C 33C 35C

Pwblemn No.

Figure 10: CT implementation: Total number of "null" cycles traced.

It is very clear from the figure that the longer timed runs trace a larger

number of "null" cycles as compared to the runs taking less time.

D-29

In conclusion we feel that while the network penalty algorithm does pro-
vide some improvement in the number of iterations it is still not as efficient
as the network simplex. This is due to the associated logic that goes into
maintaining the duals and o~her connected information on the tree. being 0
built into the heart of the optimization routine. Thus each penalty itera-
tion turns out to be more computationally intensive than the corresponding
network simplex iteration. We do not claim that ours is the most efficient
implementation, but the coding has been uniform all around and therefore
we believe our comparisons are fair. 0

References

[1] Kennington, J.L., and R.V. Helgason, Algorithms for Network Program-
ming, John Wiley, New York, 1983.

[2] Gamble, A.B., A.R. Conn, and W.R. Pulleyblank, "A Network Penalty
Method", Math Programming, North-Holland, 50, 53-73, 1991.

[31 A.R. Conn, "Constrained optimization using a nondifferentiable penalty 0
function", SIAM Journal of Numerical Analysis, 10, 760-784, 197:3.

[4] A.R. Conn, "Linear programming via a nondifferentiable penalty func-
tion," SIAM Journal of NVumerical Analysis, 13, 145-154, 1976.

[5] R.H. Bartels, " A penalty linear programming method using reduced- 0
gradient basis-exchange techniques", Linear Algebra and its Applications,
29, 17-32, 1980.

[6] Klingman, D., A. Napier, and J. Stutz, "NETGEN: A program for gener-
ating large-scale capacitated assignment, transportation, and minimum
cost network flow problems," Management Science, 814-821, 1974.

D-30

0

0 A Nearly Asynchronous Parallel LP-based
Algorithm for the Convex Hull Problem in

0 Multidimensional Space*

Jose H. DulA, Richard V. Helgason, and Nandagopal Venugopal

Computer Science and Engineering Department
* Southern Methodist University

Dallas, Texas 75275

30 June 1993

Abstract

The convex hull of a set A of n points in R, generates a poly-
*• tope P. The frame F of A is the set of extreme points of P. The

frame problem, the identification of Y given A, is central to prob-
lems in operations research and computer science. In OR it occurs in
specialized areas of optimization theory: stochastic programming and
redundancy in linear programming. In CS it is an important problem
in computational geometry. The problem also appears in economics

* and statistics. The frame problem is computationally intensive and
this limits its applications. The standard LP-based approaches for
identifying X solve several linear programs with m rows and n - I
columns, one for each element of A. In this paper we report on a
parallel procedure for identifying Y using a new LP-based approach.

* The new approach also uses linear programs with m rows, but the

*Acknowledgment. This research was partially supported by the Navy Personnel Re-
search and Development Center and the Office of Naval Research under Contract Number
N00014-91-J-1234

* E-1

linear programs which must be solved begin with a small number of
columns and grow in size, never exceeding the number of points of F.
On a small set of test problems, the serial time to identify Y varied 0
from one-half to two-thirds that of an enhanced implementation of
the standard approach. On those same problems, our parallel MIMD
nearly asynchronous implementation achieved a speedup factor of 7
to 8 using 14 to 16 processors. These developments will permit the
solution of problems previously considered too large.

Key Words: Convex hull problem, frame, linear programming, data envel-
opment analysis, asynchronous parallel algorithms, parallel linear program-
ming.

1 Introduction

A given collection of n points A = {a',..., a} in R' defines or generates
a polytope P of dimension at most t7i, which is the set of all convex corn- •
binations of points of A, also known as the convex hull of A, denoted by
conA. The extreme points of P, a subset of A which we call the framc of
A and denote by F, provides a minimal description of the polytope. We
call the identification of X given A the frame problem. The frame problem
appears in equivalent forms in several applications. In operations research
the problem appears directly in two important areas of optimization: re-
dundancy in linear programming and stochastic programming. The frame
problem is also involved in the econometric methodology for measuring the
comparative efficiency among many economic firms known as "data envelop-
ment analysis" (DEA). In computer science the frame problem plays a role
in one of the classical problems in computational geometry, that of finding
the hyperplanes which define the facets of the convex hull of a finite set of
points. Finally, the frame problem appears in statistics in the evaluation of
Gastwirth estimators. The role of the frame problem in these applications is
presented in more detail in [3].

E-2 S

2 Previous LP-based Approaches

Perhaps the first work to address directly the frame problem in its general
form was presented by Wets and Witzgall [8] in the context of the equivalent
problem of identifying the generating elements of a convex polyhedral cone.
The approach taken by Wets and Witzgall to find the "frame" of the cone
is essentially based on simplex method iterations. A more formal algorithm
presented in Wallace and Wets [7] is also based on the solution of linear
programs.

A more recent work by Rosen, Xue, and Phillips (5] also proposes an al-
gorithm for identifying the extreme points of the convex hull based entirely
on linear programs and, in addition, reports numerical results using a paral-
lelization scheme, apparently the first attempt at implementing an LP-based
approach to the frame problem in parallel.

Most previous LP-based approaches to the frame problem have essentially
relied on the following linear program to determine if element ak # 0 of the
set A = {fa,...., a"} is an element of F:

n nk

Min 1 Z, Aj s.t. aA•Aj = a ,; 0j ý 0; j--,...,n (LP1)
•k j~k

The following result relates the solution of LP1 to the determination of
the status of ak 0 0 (for a proof see [3]).

Result 1. For LP1 feasible, the point ak 0 0 is an element of the frame F
if and only if the optimal objective function value of LP1, z4, is greater than
1.

The linear program formulation LP1 is a generic form which can be used
to resolve whether or not the point ak E A belongs to F. Note that it is
possible to identify conclusively the status of all the points in the set A by
solving this linear program n times over all right-hand side vectors a ,..., a .

Linear programming formulations for solving the frame problem previ-
ously proposed are equivalent to LP1 and the approach utilizing repeated
solutions of linear programs such as the one here is standard. For exam-
ple, in Rosen, Xue, and Phillips [5] the approach is to add the constraint

E-3

0

E , Aj = I to formulation LP1, discard the objective function and then ap-

ply Phase I to verify if the set of m + 1 equalities has a nonnegative solution.
The approach presented in Wallace and Wets [7] is also based on verifying 0
feasibility, but since their formulation is for finding the extreme rays of the
positive cone generated by the elements of A, the constraint E'., A, = I is

not needed. The linear programming formulation applied in DEA introduces
extra variables, one to measure "efficiency" and the rest used as slacks.

3 Theoretical Aspects of LP-based Approaches

We now summarize some recent results which apply to previous LP-based
approaches to the frame problem and to the newer approach we proposed in
[3].

We assume that the number of points n is greater than the dimension in
with at least one subset of m vectors being linearly independent, and that
the convex hull 'P contains the origin in its interior (if not, the points call
be translated to satisfy this condition). These assumptions are necessary to
establish that the polytope 'P has dimension in.

Consider the following linear program:
n n

minz 2 = EAis.t. EaA = b; Ai > 0; j = 1,...,n (LP2)
j--- ;i=l•

where b is an arbitrary nonzero vector in R4 and not necessarily one of the
elements of A. Notice also that the index j is defined over all its possible
values without excluding any as in the original expression for LP1. Finally,
observe that LP2 is always feasible and its solution bounded since, by as-
sumption, conA has full dimension and contains the origin in its interior. 0
Denote by z2 the optimal objective function value of LP2.

The following two results are proved in t3]:

Result 2. If z2 is the optimal solution to LP2 for some b # 0 then

(1) z.• < I if and only if b is interior to 'P.
(2) -".- 1 if and only if b is on the boundary of 'P.

E-4 0

S

(3) z' > 1 if and only if b is exterior to 'P.

Result 3. The optimal basis to LP2, if unique, is composed of points
a', ... , aj" which are elements of the frame F.

These results can be directly applied to the formulation LP1 with two
important implications. The first is that any time the original linear - -gram
LP1 is solved and a unique optimal basis is obtained, the m points of. which
are in the basis are revealed as elements of the frame. The second is that
every time a point is discovered not to be an element of the frame it can
be removed from the linear program formulation. These implications can be
used to enhance the performance of the procedure for identifying the frame
of A by reducing the total number of linear programs that need to be solved
as well as by reducing their size by removing columns from the matrix of
coefficients.

Using the formulation LP1 and the results accompanying it to enhance it
means that it is required that both the objective function value and the basic
feasible solution be known to determine whether a point belongs to the frame.
The fact that, eventually, an accurate optimal basic feasible solution to LP1
is required is one reason why interior point methods are not used. Another
reason is that the input-output matrix in LP1 is dense with many more
columns than rows. This is a particularly unattractive structure for interior
point methods since these are very sensitive to the number of columns.

4 A General Approach

We now assume that some of the elements of the frame are known. (Initial
elements could easily be identified by applying simple preprocessing schemes
to the set A as in [41.) With such knowledge, the set A can be partitioned
into three subsets, AE, A.ý" and AN where:

A E = the set of all currently known elements of F,
A N = the set of all currently known nonextreme points of PF,
AU = the set of all other points of A, whose status is yet to be assigned.

E-5

Based on this partitioning we define

"pE = the convex hull of the points in AE, itself a polytope such that PE C 7P.

Consider the following procedure:

Begin Procedure ProcessPoint 9

Step 1. Select a point a k E A. 1.
Step 2. Determine if ak belongs to VE (the "current" convex hull). If so,

remove (the interior point) ak from AU, add 4k to AN, and exit the
procedure.

Step 3. Generate a direction v E R' that is normal to a hyperplane separating 0
ak and pE.

Step 4. Calculate the maximum of the inner products (v, aP);VaP E A". Let
A"aGx be the set of all points of AU which attain this maximum. Iden-
tify one or more extreme points of the set .Ama itself. Remove all
such identified points from A"' and add them to A'E.

Step 5. Calculate the minimum of the inner products (v,aaP);VaP E AU U
AAE. Let Am"' be the set of all points of AU U AE which attain this
minimum. Identify one or more extreme points of the set Am", itself.
Remove all such identified points which are also from AU and add
them to AB.

End Procedure

The following results justify and show how Steps 4 and 5 of procedure
ProcessPoint may be implemented:

Result 4. If the maximum in Step 4 of Procedure ProcessPoint occurs at
a unique point, a new element of F is generated.

Result 5. If the minimum in Step 5 of Procedure ProcessPoint occurs at
a unique point and that point is from AU, a new element of Y is generated. 0

The above results follow from the fact that optimal solutions to the linear
programs

E-6

max (c,x), and min (c,x),
xEPCVm XzEPCV"m

for some c - an arbitrary vector in R, and P any nonempty polytope,
must occur at extreme points of P. When the maximum or minimum is
unique, the point where this value is attained is necessarily an extreme point
of the polytope P. In the case of the maximum, if H(v, P) is a supporting
hyperplane separating the exterior point, ak, from the current polytope, such

* that the polytope belongs to the associated open halfspace H--(v, #) =
{y E R'nI(v,y) <#I}, then since (v,ak) > 0, either (v,ak) is the maximum
value for the inner product or the maximum is attained at some other point
of A". In any case, the maximum is attained and, if unique, it is necessarily
an extreme point of P and an element of the frame.

* The possibility of ties among eligible points in the maximum or minimum
value of the inner products in Steps 4 and 5 presents a complication. If there
is a tie among several points from the reference hyperplane, it may not be
immediately possible to identify which of the points participating in the tie
are extreme points of P. The following result shows how this can be resolved

• in essentially a recursive manner (for a proof see 14]).

Result 6. Suppose that exactly T points, l , aT, participate in a tie for
the farthest distance (on the same side) from a reference hyperplane H in
Step 4 or 5 of procedure ProcessPoint. Then Si is an extreme point of P

* if and only if ii is an extreme point of U = con{f 1 ,.. .,JT}.

This result indicates that the resolution of ties reduces to a smaller version
of our original frame problem. The resolution of ties is an implementation
problem. Note that if only two points are involved in a tie they are both
necessarily extreme points of P.

A general algorithm for identifying " is now apparent. The procedure
ProcessPoint is simply repeated until AU becomes empty. This algorithm
must solve the frame problem since at least one point leaves AU in either
Step 2 or Step 4. Such an algorithm with a declared objective to not use
linear programs was implemented and computational results were reported
in [4].

E-7

5 The New LP-based Approach

We recently [3] proposed a new procedure for solving the frame problem 0
based on the solutions to linear programs for the case of a polytope of full
dimension. On a small set of test problems, the (serial) time to identify 7"
varied from one-half to two-thirds that of an enhanced implementation of the
standard approach.

Our new LP-based approach to the frame problem relies on the following •
linear program:

minz 3 = •", s.t. Z j&3A=ak; \j>0; j=1,...,Ii (LP3)
j=j=

where a',..., are the elements of AE, ii > M + 1, pE has dimension m
and contains the origin, and ak E Au.

The following result shows how Step 3 of procedure ProcessPoint may
be implemented following the use of LP3 for Step 2 (a proof is given in [3]):

Result 7. An optimal, dual-feasible, basis for LP2 for an exterior point ak

defines a supporting hyperplane for PE that separates it from ak. Moreover,
this hyperplane is given by H(i*, 1) where i* is the corresponding optimal
dual solution.

We may now state the new LP-based procedure:

Begin Procedure LPFindFrame

Step 0. If A" is empty, exit the procedure.
Step 1. Select a point ak E AU.
Step 2. Determine if a' belongs to pE by solving LP3. If so, remove ak from

AU, add ak to AN, and return to Step 0.
Step 3. Generate the direction v E •R normal to a hyperplane separating a k

and pE, by setting v = 7r*, the optimal dual solution to LP3.
Step 4. Calculate the maximum of the inner products (v, aP); Vai E AU. Let

A m" be the set of all points of AU which attain the maximum. Iden-
tify one or more extreme points of the set A"" itself. Remove all
such identified points from AU and add them to AE.

E-8

Step 5. Calculate the minimum of the inner products (v, aP); Vap E AU U AB.
Let A-•" be the set of all points of A-UAE which attain the minimum.
Identify one or more extreme points of the set A""- itself. Remove all
such identified points which are also from AU and add them to A-E.

Step 6. If ak E AU, return to Step 2. Otherwise return to Step 0.

End Procedure

Note that in Step 4, point ak may or may not have been identified as an
extreme point and its status is checked in Step 6. Further, if the status of
ak remains undetermined, we have chosen to continue with that choice of a
point from A"4 by returning to Step 2, rather than Step 1. This choice allows
us to make use of the advanced feasible basis still available from the last LP
solution in Step 2, since we have only added one or more columns to the
previous LP.

The status of point ak will eventually be resolved since as the procedure
cycles between Steps 2 and 6, at least one point leaves A' in either Step 2
or Step 4. The same argument shows that this procedure must eventually
solve the frame problem.

The difference between the standard LP-based approach and this new
procedure is that, in the standard approach, every iteration works with the
"whole" polytope, extracting at least one point at each iteration, and applies
a check to determine if such a point is extreme or not. In the Lew procedure
proposed here, the polyhedron steadily "grows" by one or more extreme
points at a time until P is completely generated.

The only remaining issue is the initialization. The application of linear
program LP3 requires that there be at least m + 1 affinely independent
columns, which should be elements of the frame, and which contain the
origin in their convex hull. Otherwise the linear program is not guaranteed
to be feasible for any right-hand side and the powerful inferences possible
from Result 2 would be invalid. There are several ways to assure that these
initialization conditions are attained. We propose that the procedure be
initialized in the following manner. Find the vector in A with greatest norm.
This point is necessarily an element of F (see Result 2 in [41). Take the
negative of this "max-norm" vector and use it as the right-hand side element
of the linear program LP2. The resultant basic feasible solution, if unique,
is composed of m more elements of the frame from Result 3. (If not unique

E-9

Si

select another right-hand side which is the negative of some other element of
the frame until one is found which generates a unique optimum.) These m
vectors contain the right-hand side in their positive cone; therefore, applying 0
Farkas' Lemma we may conclude that the m vectors in conjunction with the
negative of the right-hand side vector constitute an affinely independent set
of m + 1 vectors that positively span the space. Moreover, the convex hull
of these vectors necessarily contain the origin (apply Stiemke's Theorem of
Alternative). Note that this initialization scheme essentially identifies rn + 1
points from the frame of A, the convex hull of which is an m-dimensional
simplex which contains the origin in its interior. Also, by selecting the '-fax-
norm" vector as the "seed" for the right-hand side of LP2 we may suppose
that the resultant simplex is, in some sense, large (for more on how theorems
of alternatives play a role in these ideas and on how this initialization scheme
generates a "large" simplex, see [2]).

Notice that procedure LPFindFrame based on the linear program for-
mulation LP3 is fundamentally different from the standard LP-based ap-
proach. Here we "build-up" the polytope. The procedure using LP3 gener-
ates linear programs that grow by one column every time a new vertex of P
is identified. In the case of LP1 the size of the linear program starts at m by
n - 1 and, if enhancements are implemented, the number of columns may be
reduced by removing points that are discovered not to belong to the frame.
Since the columns used in LP3 are always elements of the frame, the size of
the final linear program is determined by the total number of extreme points
of P and the size of each intermediate linear program is the total number
of extreme points of IPE. On the other hand, a difference which favors the
approach based on LP1 is the necessity of calculating and comparing inner
product values in Steps 4 and 5. From our computational results in [31 we
conclude that this difference is not enough to offset the advantages of the
new procedure.

An important concern in the new method is the complication that arises
from the presence of ties in Steps 4 or 5. Ties among three or more points are
resolved by finding the frame of the points participating in the tie. However,
finding just one element of this nested frame problem is sufficient to be able
to proceed. A simple sorting as in "Preprocessor 1" of [4) will yield such
a point. The inclusion of a point in A4E means that the current polytope
changes its shape.

E 10

6 Parallel Formulation

We wish to consider the implementation of the new LP-based approach in a
parallel MIMD environment, the SEQUENT SYMMETRY S81 with 20 pro-
cessors, each equipped with a Weitek 1167 floating-point accelerator. As with
the serial implementation we made use of the XMP linear programming code
written by Roy Marsten for the solution of LP problems. We intended that
the XMP code be modified to run multiple LP problems concurrently. We
had two primary goals in mind in designing the modified parallel XMP code:
(1) all LP problems should share the basic problem data, avoiding wasteful
duplication and inefficient use of the memory resource, and (2) modify as
little of XMP as possible. Note that XMP makes use of an array STATUS
with length the number of probiem variables in two ways: (1) entry j may
contain zero or one of several negative numbers which indicate that variable
j is nonbasic at upper or lower bound or is fixed at one of those bounds, or
(2) entry j may contain a positive number which is the row in which variable
j pivots and thus also indicates that variable j is basic. This array will have
to be replicated for each concurrent LP problem because of usage (2). This
dual usage also has an effect on the amount of synchronization needed in the
overall implementation.

Consider the following procedure which combines features of both Pro-
cessPoint and LPFindFrame:

Begin Procedure Process(ak)

Step 1. If a' 0 A"! exit the procedure.
Step 2. Determine if ak belongs to pE by solving LP3. If so, remove ak from

AU, add ak to AN, and exit the procedure.
Step 3. Generate the direction v E R'm normal to a hyperplane separating ak

and PE, by setting v = ,r*, the optimal dual solution to LP3.
Step 4. Calculate the maximum of the inner products (v, aP); VaP V AN. Let

A,"" be the set of all points aP 0 AN which attain this maximum.
Identify one or more extreme points of the set Am" itself. Remove all
such identified points which are also from AU and add them to AE.

Step 5. Calculate the minimum of the inner products (v, aP);VaP V AN. Let
A,,in be the set of all points aP 0 AN which attain this minimum.
Identify one or more extreme points of the set Am"'i itself. Remove all

E-11

E

such identified points which are also from A' and add them to AE
Step 6. Return to Step 2.

End Procedure 0

Note that expression "ak V AN" in Process(ak) has replaced expressions
"a0 E AU" anl "a0 E AU U AE- in Steps 4 and 5, respectively, of LPFind-
Frame. Also in Step 4 of Process(ak) we "remove all such identified points
which are also from AU and add them to A E", whereas in the same step 0
of LPFindFrame we only "remove all such identified points from AU and
add them to AE . jFrom the definitions, ak V AN and aP E AU U AE are
equivalent and a' V AN includes not only points aP E AU, but also points
aP E AE at which the maximum would not occur. Apparently Step 5 re-
mains the same in both procedures and Step 4 of Process(ak) has added 0
some inefficiency and redundancy. We shall see that in the implementation
environment, these changes are necessary.

The set of procedures { Process(ak) : k = 1,...,n} constitute a par-
titioning of the frame problem into n problems which are essentially inde-
pendent in that no knowledge of the results of any other problem solution is 0
necessary to carry out any other problem solution. Hence the frame problem
is a good candidate to be cast as an asynchronous parallel algorithm in the
sense of Part 2 of [1]. This could in fact be achieved, except for the dual use
of the array STATUS by XMP.

The code uses a startup serial portion which sets up the data mappings •
for later concurrent use by the processors and finds an initial basis exactly as
the serial implementation so that we begin with m + I known extreme points
in Y. The only modification actually necessary to the XMP system was to
change the routine XMAPS which maps all the data structures into two large
arrays MAPI and MAPR containing integer and real data, respectively. The 0
mappings were modified to allow several processors to access the problem
data and to allow separate basis inverse handling. The initialization within
XMAPS of a labeled common block used by the routines which handle the
basis was also moved to our interface routines which call XMP routines.

We also had to determine which working arrays needed to be replicated •
for local data and which contained fixed information which could be placed
in shared memory. All this was handled in our interface routines and was
thus transparent to the XMP system itself.

E-12

0

S

We used a single point-length shared-memory array STATPT to hold
the current status of all points, using the following scheme:

(1) STATPT(k) = -1 if and only ifa E AN.
(2) STATPT(k) = 0 if and only if ak E Au.
(3) STATPT(k) = 1 if and only if a" E AE.

After the starting basis was obtained all the additional processors were
forked off from the parent processor so that all processors had identical copies
of the same advanced basis. Each processor then proceeded in two phases. In
the first phase points were selected from A for processing in an implementa-
tion of Process(ak) in such a way that all processors partitioned A without
overlap. Each processor actually looked for points to process by stepping
through array STATPT in steps the size of the number of processors with
starting position offset by the processor number. Any processor finishing the
first phase then enters the second or "mopup" phase. Any processor in the
mopup phase looks for work by moving sequentially through STATPT in the
opposite direction to that used in the first phase. Thus early finishers in
the first phase "poach" work from slower finishers allowing all processors to
finish work at about the same time. No synchronization was used in phase
two, so that it is possible more than one processor in phase two could be
working concurrently on the same problem or on a problem being worked
on by a processor in the first phase. It was felt that the results were good
enough and the resulting implementation was simple enough to justify not
introducing extra synchronization overhead.

As the processors work, the underlying XMP problem data reflects the
current status of AE, Al, and AN, as given by STATPT. All points in A" and
AN have their entry in STATUS set at -4, indicating that the corresponding
variable is fixed at a lower bound of 0. All points in AE and AN have their
entry in STATUS set at a nonnegative value, either 0 indicating the variable is
nonbasic at 0 or a positive value indicating the variable is basic and specifying
the row in which it pivots. Thus when a point is removed from AU and placed
in AE, the corresponding entry in STATUS needs to be reset to 0, which then
allows it to enter the basis when appropriate.

As processors work on specific points they need to post their determi-
nations of point status. Essentially all that would be necessary would be

E-13

to enter a 1 or -1 in the appropriate position in STATPT and reset the
appropriate position in STATUS to 0 in every processor's local copy. But a
complication arises because of the dual use of the array STATUS by XMP. If
all processors were allowed to perform the updates above without synchro-
nization a "race condition" exists. A processor could notice that a variable
just changed its STATUS entry to 0 and pivot it into the basis, whereupon
another processor posting the same variable as extreme resets the STATUS
entry in all processors to 0 with disastrous consequences for the processor
which had just pivoted.

Thus the posting must be handled carefully and only the first proces-
sor posting a variable as extreme can be allowed to change the appropriate
STATUS entry for all processors.

The acual DYNIX FORTRAN code used for this synchroniztion is given
below. Examination of the code shows that so few operations must must be
carried out in a "locked" state that we feel justified in characterizing this
parallel algorithm as "nearly" asychronous. In fact, if we were to use two
arrays in place of STATUS, one for fixed variable status or a new "eligible to
enter the basis" status and one for nonbasic at a bound status or basic and
pivoting in a specific row, the algorithm could become truely asychronous.
However, this violates our stated goal of keeping modifications of XMP to a
minimum as this would require extensive recoding of XMP.

SUBROUTINE CRIT(PT, ST, PTS,PPN, STATUS,KNOWN, FXCOLS)
INTEGER PT,ST,PTSPPN,STATUS(PTS,PPN),KNOWNFXCOLS,I 0

C expect ST = 1 if point PT is identified as extreme
C expect ST --I if point PT is identified as nonextreme
C PTS = number of points
C PPN = number of processors
C KNOWN = count of points whose status is known
C FXCOLS = count of points whose LP columns are fixed at 0

IF(STATPT(PT).NE.0) RETURN
CALL m-lock

KNOWN - KNOWN+1
STATPT(PT) = ST
IF(ST.GT.0) THEN

FXCOLS = FXCOLS-1
DO 10 I=1,PPN

E-14

STATUS(PT,I) - 0
10 CONTINUE

SENDIF
CALL m._unlock

RETURN
END

Another potential race condition was avoided by the modifications to
0 Steps 4 and 5 previously noted for Process(ak). While a given processor

is computing the indicated inner product maximum another processor could
post a point as extreme that was not extreme when the given processor
finished its LP problem. If the point in question was where the maximum
would have occurred relative to the view of A" present when Step 2 finished,

* a false extreme point detection could result. The additional modification to
Step 4 is necessary for similar reasons. In the actual coding of Steps 4 and
5, it is most efficient to compute the maximum and minimum over the same
points while computing the inner products once.

The only question which remains is whether or not this algorithm could
somehow cycle in the sense that the processors operating concurrently keep
reidentifying the same points as extreme that have already been identified as
extreme and fail to identify any new points as nonextreme.

Result 8. If All in not empty and at least two processors are working on
two distinct points executing Process(ak), then at least one point of AU will
be identified as extreme or nonextreme.

Suppose to the contrary, that no new points are identified. Then AE,
AU, and AN do not change. Hence each instance of Process(ak) being
executed is an instance of procedure ProcessPoint, which implies that for
every executing processor at least one point leaves AU in either Step 2 or
Step 4.

7 Computational Results

For test problems we have used the same three moderate-sized DEA problems
employed in the testing of the new LP-based approach (see [3]). This data

E-15

was preprocessed, ordering it by distance from the origin. In so doing it is
likely that those furthest from the origin will be extreme points (the furthest
is guaranteed to be extreme). Characteristics of these problems are given in
Table I below along with the best serial time reported in [3]. The serial time
will be used in computing speedup. All times are wall clock times in seconds
on the Sequent Symmetry S81.

E-16

• ' = " " , i II I I I I I Ii i I

0

0

Table 1. Test Problems

Data Characterstics
* Prob. Extreme New LP

No. Source Points Dimension Point Serial
Density Time

1 Actual 334 19 100% 993
2 Actual 816 14 90% 1890

0 3 Generated 1000 7 34% 651

Table 2. Average Run Time and Speedup Factors
0 Average Run Time Speedup

No. of 334 816 1000 334 816 1000
Procs pt. prb. pt. prb. pt. prb. pt. prb. pt. prb. pt. prb.

1 1264 2499 785 0.79 0.76 0.83
2 593 1231 432 1.68 1.54 1.51
3 426 848 314 2.33 2.23 2.07
4 331 640 234 3.00 2.95 2.79
5 272 528 207 3.65 3.58 3.14
6 238 449 160 4.18 4.21 4.07
7 212 407 156 4.68 4.64 4.16
8 192 371 148 5.16 5.10 4.39
9 174 335 130 5.70 5.65 5.01

10 165 307 122 6.03 6.16 5.32
11 154 283 114 6.45 6.68 5.69
12 147 268 107 6.76 7.06 6.07
13 143 266 98 6.93 7.11 6.67
14 133 251 95 7.47 7.52 6.85
15 131 227 91 7.56 8.33 7.18
16 132 240 89 7.50 7.88 7.31

0

* E-17

The test runs employed a fixed number of processors varying from 1 to
16 processors executing the paralel code. These runs were not made in a
dedicated environment, and are thus subject to the varying influence of the0
rest of the system load. Since the serial times reported in (31 included data
input time, we have chosen to include this in our timings. Hence. our speedup
factors may be considered to be conservative. The test runs consisted of three
repetitions of each of the three problems for each fixed number of processors.
The average run times and speedup factors are given in Table 2.•

Figures 1-3 show plots of the run times and speedup factors for each
problem. The run time plots include the maximum and minimum run times
to give an idea of the variability.

Figure 1 about here
0Figure 2 about here

Figure 3 about here

As was expected, the times for one processor are inferior to the (one-
processor) serial times. This is due in part to the increased overhead of the 0
parallel code, but mostly due to the fact that the parallel code is not "smart"
in computing inner products and cannot bypass the ones corresponding to
points already declared as extreme in Step 4 and cannot abandon further
inner products when an exteme points gives a smaller inner product value
than the minimum inner product over the unknown status points in Step 5. 0
The speedups achieved appear to be good, leveling off at 14 to 16 processors
while achieving speedups of 7 to 8 in that area.

Figure 4 shows how the work is distributed among the processors and
Figure 5 shows that the magnitude of the major components of the work does
not vary greatly for an average LP solution over the range of the processors. •

Figure 4 about here

Figure 5 about here

8 Concluding Remarks 0

The primary motivation for this research has been to provide a resource for
large scale applications which require finding the frame of the convex hull.

E-13 0

0

Applications equivalent to the frame problem in data envelopment analysis
routinely exceed n = 8,000 to n = 10,000 points over fewer than m = 20
dimensions. In these applications, it takes several hours to identify the frame
applying the conventional methods of solving n linear programs with m rows
and n - I columns. Similar situations exist in stochastic programming. In
general, the state-of-the-art in techniques for finding the frame is such that
the methodology limits the size of the applications can be addressed. As
Wallace and Wets [7] state: "there is a lot to be gained by a more efficient
implementation (of an algorithm to find the frame of the convex hull, than
one based on solving L.P.'s)". Our investigations on parallelizing our new
procedure based on solving linear programs which begin small and increase
progressively in size have shown that we can realistically expect a reduction
equivalent to one order of magnitude in the solution times. These develop-

* ments will permit the solution of problems previously considered too large.

E-19

-- .

I0

References

[I] Bertsekas, D.P., and J.N. Tsitsiklis, Parallel and Distributed Computa- 0
tion, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

[2] Duhi, J.H., "Designing a majorization scheme for the recourse function of
two-stage stochastic linear programs," Computational Optimization and
Applications, Vol. 1, No. 4, 1993.

[3] Duli., J.H. and R.V. Helgason, "A New Procedure for Identifying the
Frame of the Convex Hull of a Finite Collection of Points in Multidimen-
sional Space," Tech. Report 93-1, Southern Methodist University, Dallas,
Texas, 1993.

[4] Dulh, J.H., R.V. Helgason, and B.L. Hickman, "Preprocessing schemes
and a solution method for the convex hull problem in multidimensional
space," in Computer Science and Operations Research: New Develop-
ments in their Interfaces, 0. Balci, ed., Pergamon Press, UK, 1992.

[5] Rosen, J.B., G.L. Xue, and A.T. Phillips, "Efficient computation of ex-
treme points of convex hulls in N," Preprint 91-42, Army High Perfor-
mance Computing Research Center, University of Minnesota, Minneapo-
lis, MN 55415, 1991.

[6] Wallace, S.W. and R.J.-B. Wets, "Preprocessing in stochastic program-
ming: the case of uncapacitated networks," ORSA Journal on Comput-
ing, Vol. 1, No. 4, pp. 252-270, 1989.

[7] Wallace, S.W. and R.J.-B. Wets, "Preprocessing in stochastic program-
ming: the case of linear programs," ORSA Journal on Computing, Vol.
4, pp. 45-59, 1992.

[8] Wets, R.J.B. and C. Witzgall, "Algorithms for frames and lineality spaces
of cones," Journal of Research of the National Bureau of Standards - B
Mathematics and Mathematical Physics, Vol. 71B, No.1, pp. 1-7, 1967.

E-20 S

Run Time Vs. Number of Processors
1400 1 1

Average Time

M1200 mum

I000 *Maximum Tme -.--

800 Serial Tune

1600

4 ~400

200

0
0 2 4 6 8 10 12 14 16

Number of Processors

i4} SpeeJjp Vs& Number of Processors
8

7

6

5

3

2

0
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 1: 334 Point Problem

E-21

Ron Time Vs. Number or ProcessOIS

30MAvefu Tim -

MiWOMumTime...

2500wd
u Time ---

2000 *,WTn

1500

S1000

500

0 2 4 6 8 10 12 14 16

9 ~Speediup Vs. Number of ProcessOrs

7B

5

*4

2

0 6 8 1 12 14 16

Number Of ProccssOm

Figure 2: 816 point Problem

0

E-22

Run Time Vs. Number of Processors

800

700 Averge Time

600 Minimum T.i.

500 Maimum Time- .

S300""

200

100

0
0 2 4 6 8 10 12 14 16

Number of Processors

S Speedup Vs. Number of Processors

6

3

2

0
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 3: 1000 Point Problem

E-23

-0

110- --- •

Number of LPs/Processor Vs. Number of Processors

1000 1 1
900 , 334 pL p& - •

800 -
700 1I0ppib.

61 0 00. .pL p .

0 500

400 ,

S300 ,

S100 - ..
~20

0 l I I I I

0 2 4 6 8 10 12 14 16
Number of Processors 0

LP Iterations/Processor Vs. Number of Processors

-60000
334 pt. prb.

50(0 8 8166pt. prb.

*040000 1000 pt. prb.

o-30000

* 10000 ,

I 0 -

0 1 1 1----------- --------- F-----f0 2 4 6 8 10 12 14 16

Number of Processors

Figure 4: Work Distribution amongst the processors 0

E-24

Inner Products computed for an average LP
800 , , ,

700

*0650 334 pL p -.

M 600-
S550 -86 pL b.

50 -1000 OG mptb.

3450
S400

* 350

250 i
0 2 4 6 8 10 12 14 16

Number of Processors

Average LP Iterations required for an average LP

90 ...

85 0 --.

." 334 ptL prb.

70 0
916 pL pb.

60 -

10 pL ob

40 ,-. ,

30
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 5: Work distribution per solved LP

E-25

Distribution List

Stanley C. Collyer, Chairman
Manpower Research and Development Planning Committee
ONT 222 0
800 North Quincy Street
Arlington, VA 22217-5000

Donald Wagner
Code 1111 MA
Office of Naval Research
800 Quincy Street
Arlington, VA 22217-5000

Thomas A. Blanco, Head 0

Assignment Systems Division
Navy Personnel Research and Development Center
Code 112
San Diego, CA 92152-6800 0

Timothy Liang
Navy Personnel Research and Development Center
Code 112
San Diego, CA 92152-6800 0

losef Krass
Navy Personnel Research and Development Center
Code 112
San Diego, CA 92152-6800 0

Wally Sinaiko
Manpower Research and Advisory Services
Smithsonian Institution
801 N. Pitt Street #120
Alexandria, VA 22314-1713

Carole Voltner, Assistant Director
Office of Research Administration
SMU •
Dallas, TX 75275

